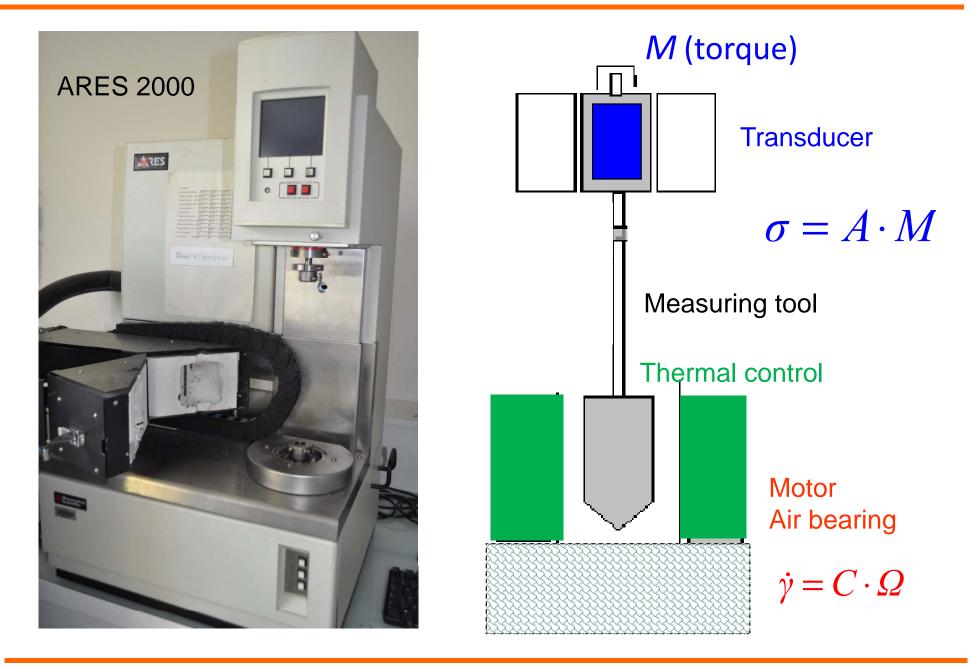
Chapitre 2 Methods and techniques

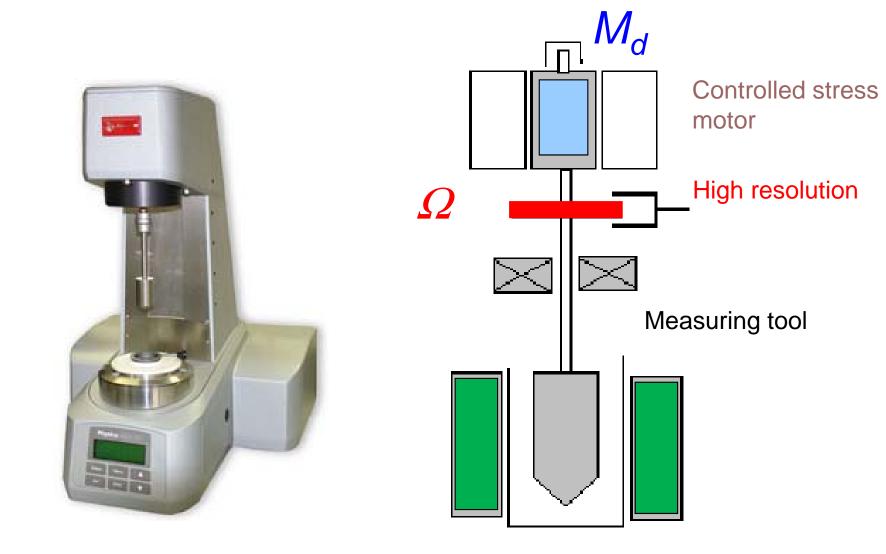
2.1 Rheology at the macroscopic scale
2.2 Rheology at the microscopic scale
2.3 Rheology using microfluidic techniques
2.4 Coupling between rheology and structural investigations

2.1 Macroscopic rheology

Controlled strain/rate rheometer

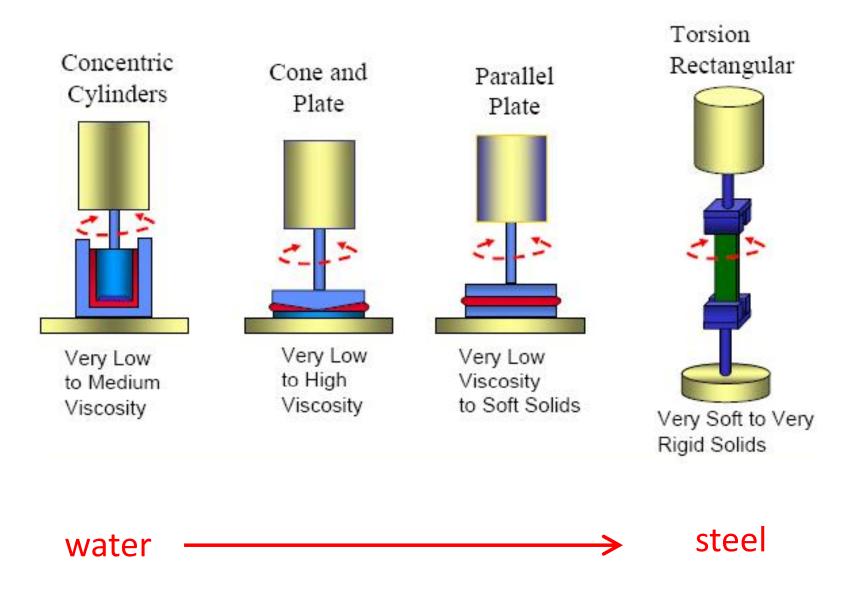


Controlled stress rheometer

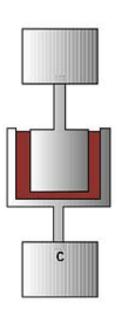


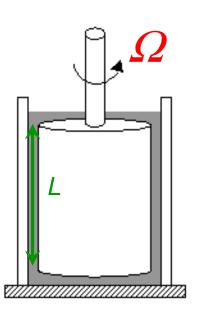
Thermal control

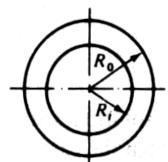
Measuring tools



Couette geometry





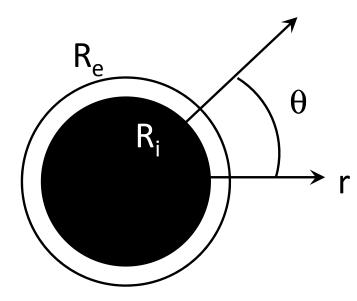


Low viscosities (solutions): η_0 <1 Pa.s

High shear rates

Not suited for viscous liquids or melts

Flow in a cylindrical Couette



Laminar flow $V_{\theta} = r\Omega$ No gravity Symmetry $/\theta: \partial / \partial \theta = 0$ $T = -pI + \sigma$

Navier Stokes equations (cylindrical coordinates)

$$-\rho \frac{V_{\theta}^{2}}{r} = \frac{1}{r} \frac{\partial (rT_{rr})}{\partial r} - \frac{T_{\theta\theta}}{r} = \frac{\partial (\sigma_{rr})}{\partial r} - \frac{\sigma_{\theta\theta} - \sigma_{rr}}{r}$$
$$\frac{\partial (r^{2}\sigma_{r\theta})}{\partial r} = 0 \qquad \sigma_{r\theta} = \frac{\sigma_{i}R_{i}^{2}}{r^{2}}$$
$$-\frac{\partial p}{\partial z} + \rho g = 0 \qquad \text{Hydrostatic pressure}$$

Relation between torque and stress

The shear stress varies through the gap between the cylinders At the inner cylinder:

$$\frac{M_i}{R_i} = \sigma_{r\theta}(R_i) 2\pi R_i L$$
$$\sigma_{r\theta}(R_i) = \frac{M_i}{2\pi R_i^2 L}$$

M_i: torque applied on, or measured at, the inner cylinder

For small gaps, $R_i/R_e > 0.99$, we can neglect the curvature (~parallel plates):

$$\overline{\gamma} = \frac{\Delta x(r)}{\Delta r} = \frac{\theta \overline{R}}{R_e - R_i}$$
 with $\overline{R} = \frac{R_e + R_i}{2}$

Similarly for the shear rate:

$$\overline{\dot{\gamma}} = \frac{\Delta v(r)}{\Delta r} = \frac{\Omega_i \overline{R}}{R_e - R_i} \text{ avec } \overline{R} = \frac{R_e + R_i}{2}$$

General expressions exist for large gaps:

$$\dot{\gamma}_{i} = 2\Omega_{i} \frac{d \operatorname{Ln}(\Omega_{i})}{d \operatorname{Ln}(M_{i})}$$

Normal stresses

Normal stresses are: $T_{\theta\theta}$ et T_{rr} The first normal stress difference is:

In the absence of inertia:

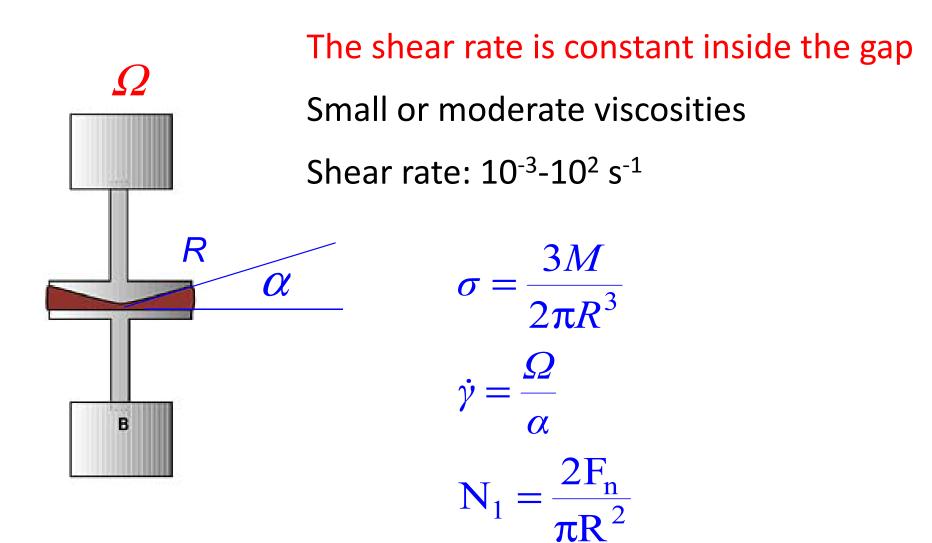
$$0 = \frac{\partial(\sigma_{rr})}{\partial r} - \frac{\sigma_{\theta\theta} - \sigma_{rr}}{r}$$
$$N_1 = r \frac{\partial(\sigma_{rr})}{\partial r}$$

 $N_1 = T_{\theta\theta} - T_{rr} = \sigma_{\theta\theta} - \sigma_{rr}$

$$N_1 = \left[\sigma_{rr}(R_i) - \sigma_{rr}(R_e)\right] \frac{\overline{R}}{R_0 - R_i}$$

Difficult to measure Pressure sensors located on the cylinders Small pressures

Cone and plate geometry



Parallel plate geometry

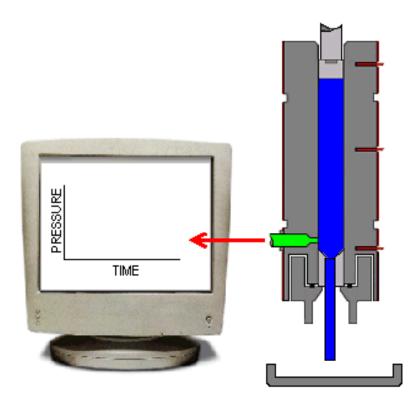
Loading is easy Well adapted to polymer melts, pastes, or highly viscous liquids γ , γ and σ vary with *r*, measurements are given at *r*=*R*

$$\dot{\gamma}_{R} = \frac{R\Omega}{d}$$

$$\sigma_{R} = \frac{3M}{2\pi R^{3}} \left(1 + \frac{1}{3} \frac{d \ln M}{d \ln \dot{\gamma}_{R}} \right)$$

$$(N_{1} - N_{2})_{R} = \frac{F_{n}}{\pi R^{2}} \left(2 + \frac{d \ln F_{n}}{d \ln \dot{\gamma}_{R}} \right)$$

Capillary rheometer



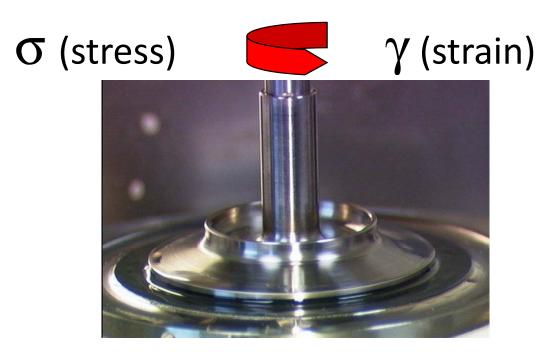
The material (paste, polymer melt) is pushed through a capillary The applied stress depends on the properties of the material

$$\dot{\gamma}_{a} = \frac{4Q}{\pi R^{3}}, \sigma_{a} = \frac{R\Delta P}{2L}$$

Entrance: Bagley corrections Power law fluids: Rabinovitch correction

Domains of applications: highly viscous /elastic materials and high shear rates (100/1000 s⁻¹)

Rheological protocols

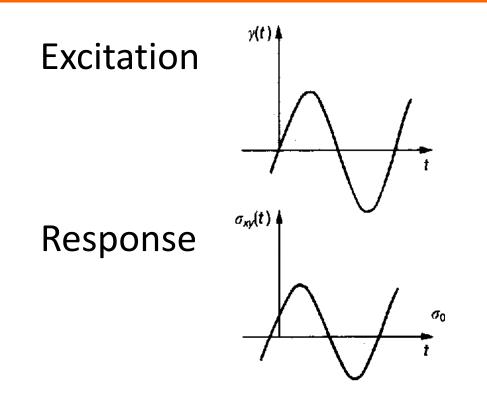


Small deformation Linear response Equilibrium structure

 $\gamma \tau \ll 1$

Large deformation Non linear response Out of equilibrium structure

Mechanical spectroscopy (small deformations)



Example: entangled polymer solution

 $\gamma(t) = \gamma_0 \cos(\omega t)$

In-phase component: G'(ω) Elasticity – storage modulus

Out of phase component: G"(ω) Dissipation – loss modulus

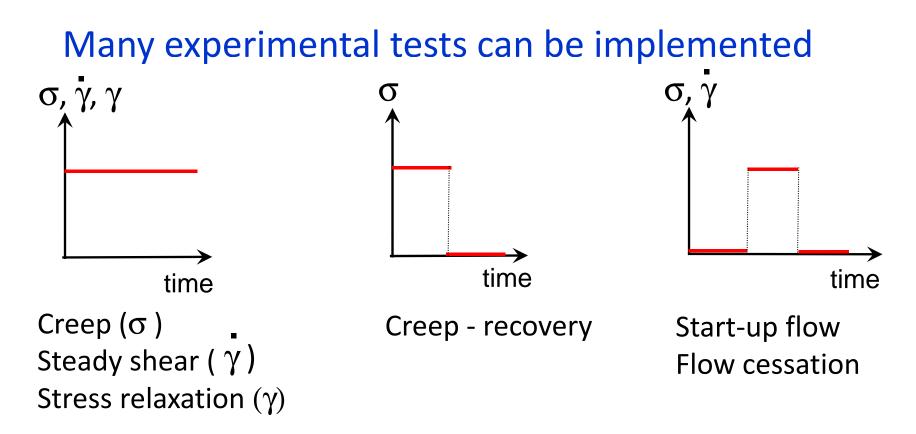


Strengths and drawbacks

- "easy" to implement
- a huge theoretical and experimental background is available
- the dynamics reflects/is associated with the equilibrium structure

- Large amounts of products are necessary (>1 ml)
- In-vivo measurements are not possible (biology)
- The low deformation limit may be difficult to acheive
- The accessible frequency window is narrow ($10^{-2} < \omega < 10^{2} \text{ rad/s}$)

Non-linear rheology



The response is associated with a non-equilibrium structure The microscopic interpretation/modelling is difficult It is generally necessary to determine the dynamic structure Flow heterogeneities are frequent

Problems and challenges

The torque falls outside the experimental window (0.02 μ N.m/200 mN.m in general)

Evaporation

Phase separation, sedimentation...

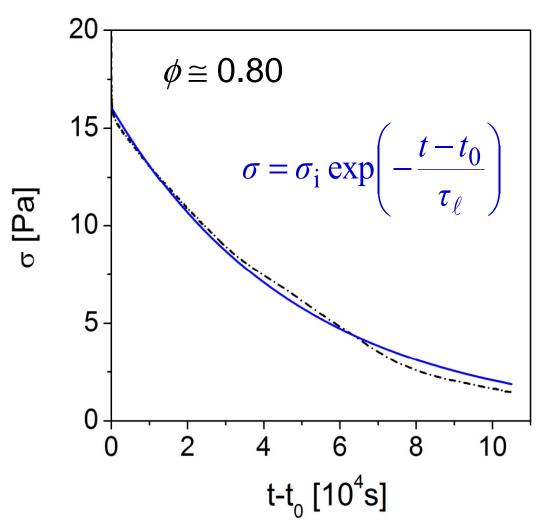
Incorrect loading

The edge of the sample develops an elastic instability

The materials stores internal stresses that slowly relax

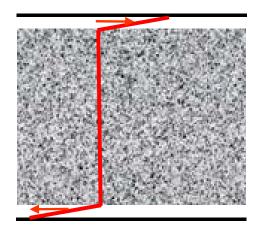
Non homogeneous flows

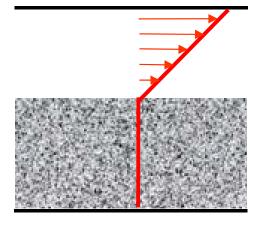
Slow relaxation in a concentrated suspension

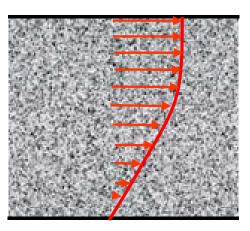


- Suspension in the jamming regime
 - Generic behaviour of glassy materials
 - Sequences of measurements are impossible unless the sample is annealed

Non homogeneous flows







Wall slip

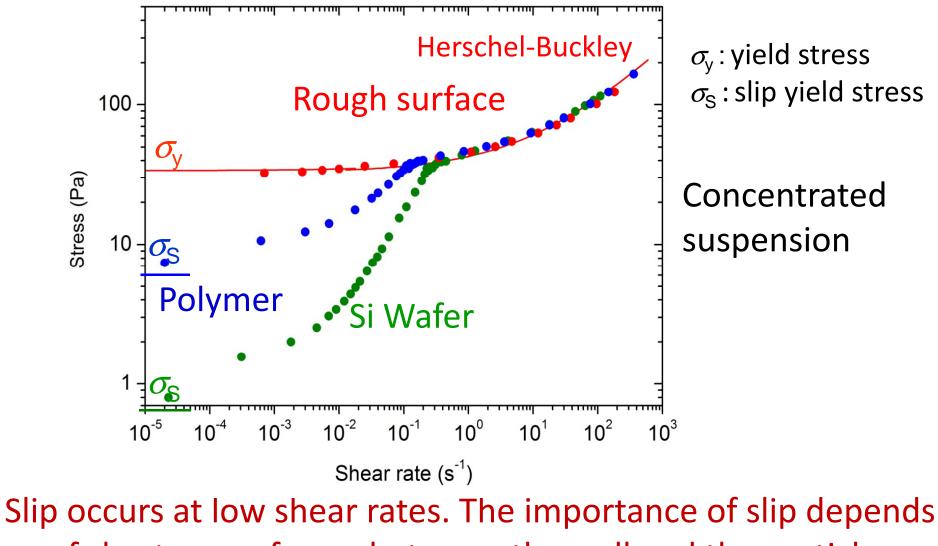
Shear-banding

Continuous shear-banding

Polymer melts Colloidal suspensions Jammed colloids Granular materials Entangled polymers Star polymers Giant micelles

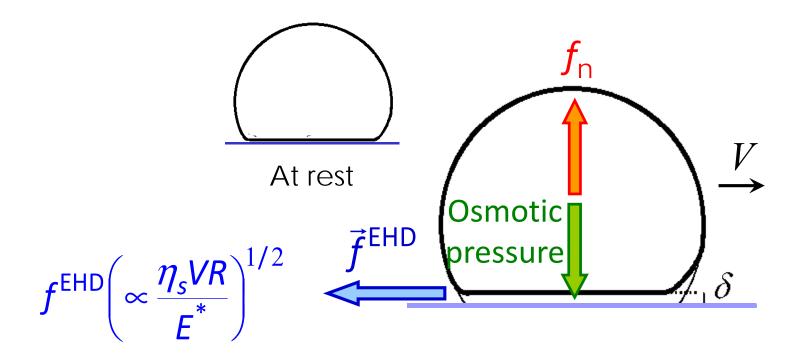
Colloidal glasses

Wall slip of jammed suspensions



of short range forces between the wall and the particles

Slip of jammed emulsions: soft lubrication

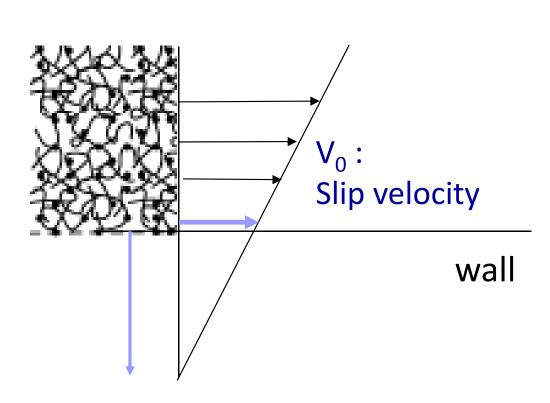


Film thickness : 5 nm – 50 nm

Relative motion causes asymmetry, which generates a lift force (f_n) and maintains a lubricated film

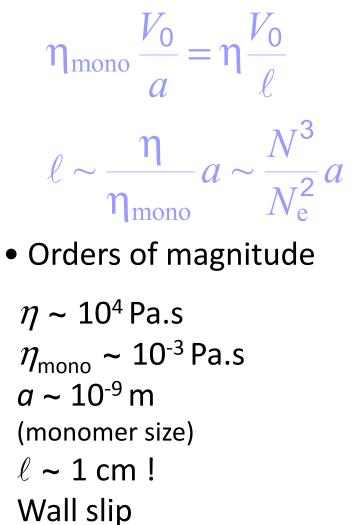
Slip of polymer melts

Smooth wall without chain adsorption

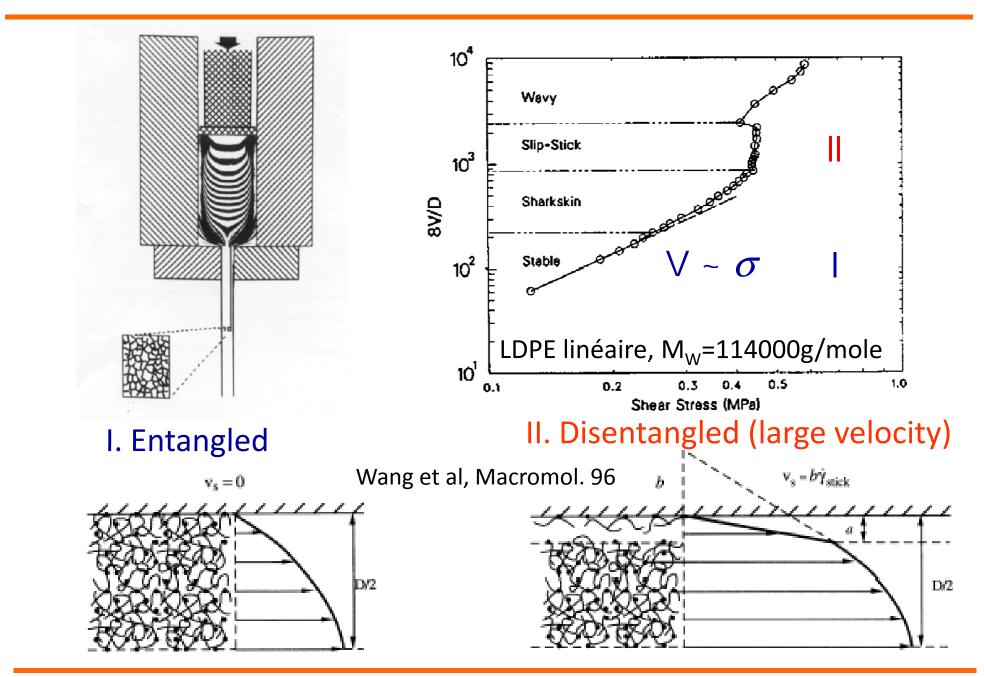


 ℓ : extrapolation length

• Wall stress



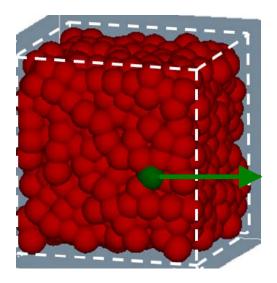
Chains adsorbed at the wall



2.2 Rheology at the microscopic scale

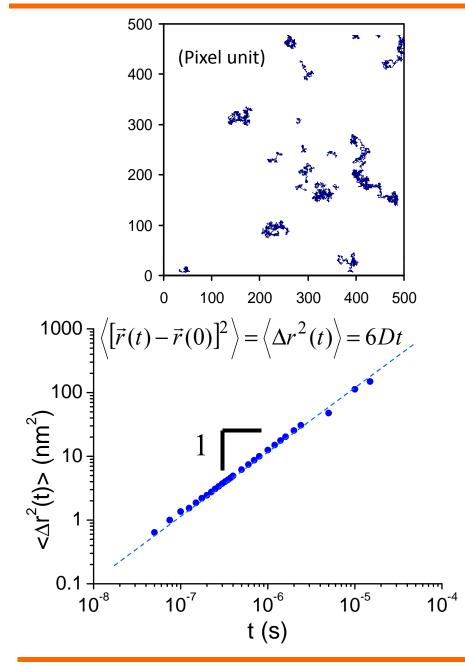
Passive and active microrheology

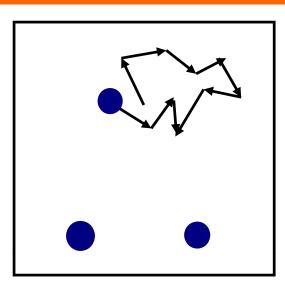
Passive μ -rheology: we measure the response to thermal fluctuations of spherical probe colloids ($\cong 1 \ \mu$ m) added to the material



Active μ -rheology: we measure the response to a forced excitation (optical or magnetic tweezers) of spherical probe colloids (\cong 1 μ m) added to the material

Brownian spheres in a viscous fluid



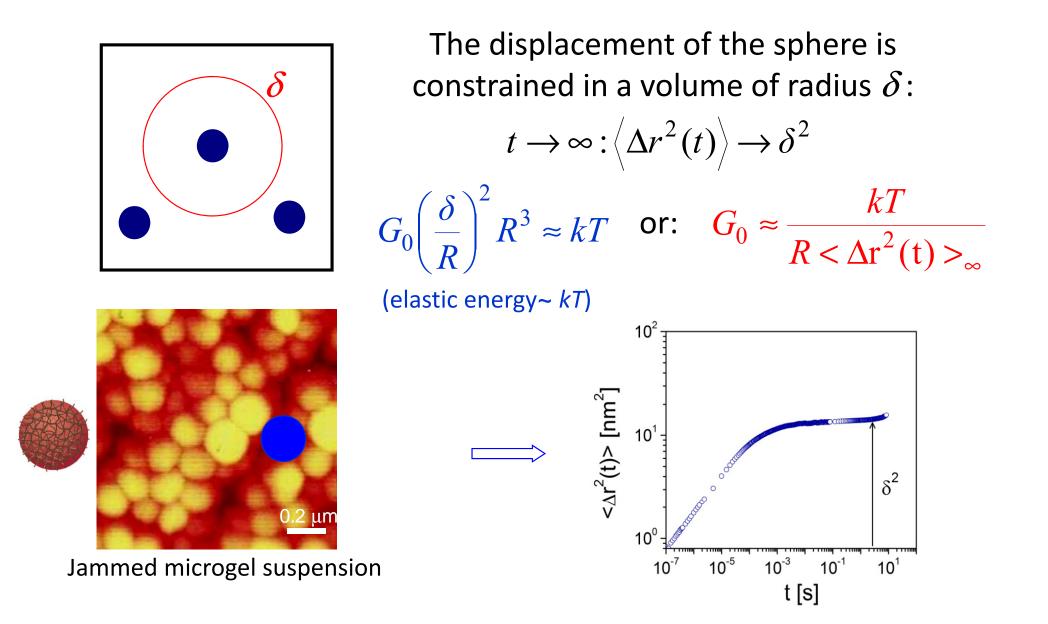


Stokes—Einstein relation (fluctuation-dissipation) :

 $D = \frac{kT}{\pi \eta R}$

$$\eta = \frac{kT}{\pi R \frac{\left\langle \Delta r^{2}(t) \right\rangle}{t}}$$
$$G'' = \eta \omega = \frac{kT}{\pi R \left\langle \Delta r^{2}(1/\omega) \right\rangle}$$

Brownian spheres in an elastic medium



Generalized Stokes-Einstein relation

Hypothesis:

The relaxation modulus has the same behaviour as the local fluctuations that affect the displacement of the probe particles

 $\widetilde{G}(s) = \frac{kT}{\pi R \, s < \varDelta \widetilde{r}^{\,2}(s) >}$

 $\Delta \tilde{r}^2(s)$ is the Laplace transform of $\langle \Delta r^2(t) \rangle$

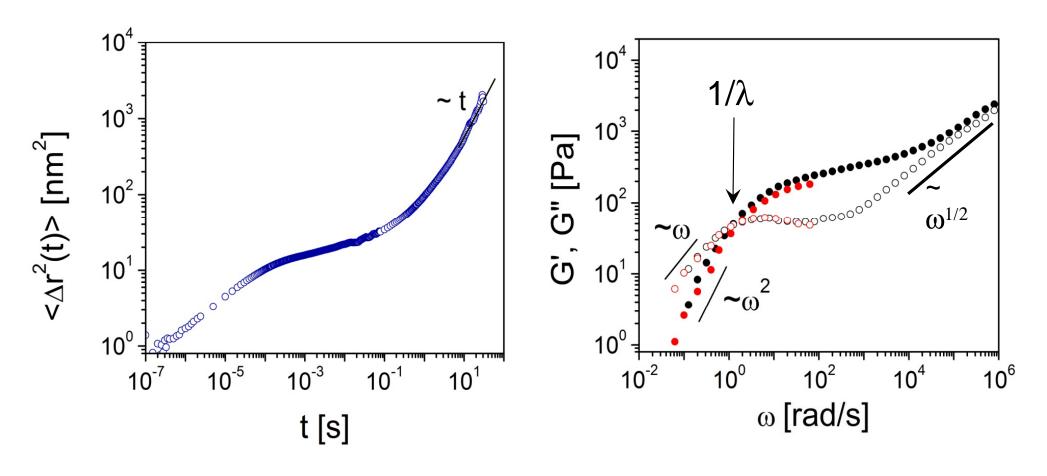
The complex modulus is obtained by making $s = i\omega$ in $\widetilde{G}(s)$

Discrete algorithms have been developed

T. G. Mason and D. A. Weitz, *Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids*, Phys. Rev. Lett. **74**, 1250 (1995)

T. G. Mason, *Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein relation*, Rheol. Acta **39**, 371 (2000)

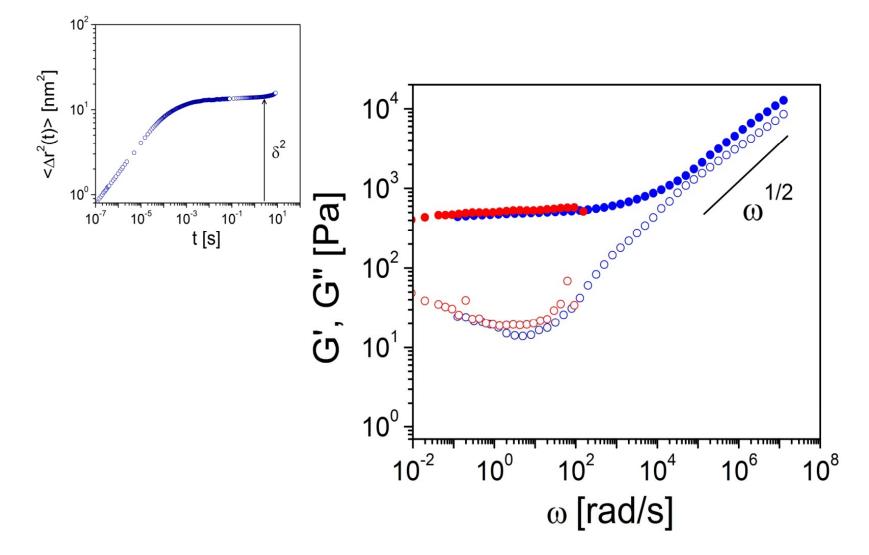
Viscoelastic polymer solution



High frequency spectroscopy

F. Monti, *Microrhéologie de suspensions colloïdales non ergodiques: relaxations locales, dynamiques lentes et vieillissement*, PhD thesis, Université Pierre et Marie Curie, Paris (2010)

Linear rheology of a jammed suspensions



F. Monti, *Microrhéologie de suspensions colloïdales non ergodiques: relaxations locales, dynamiques lentes et vieillissement*, PhD thesis, Université Pierre et Marie Curie, Paris (2010)

Advantages and limitations

Small volumes

```
Linear response (the excitation is \cong kT)
```

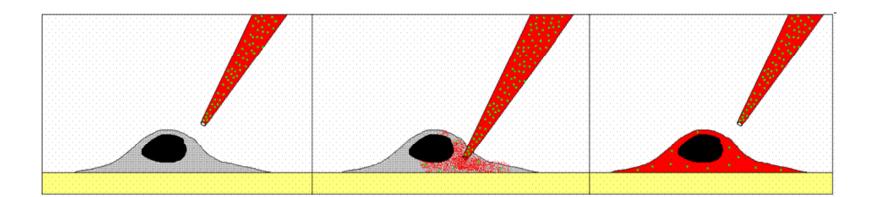
```
Good sensibility (G' et G" ~ 10<sup>-2</sup> Pa)
```

No suitable for rigid materials

The coupling between the probe particles and the environment matters

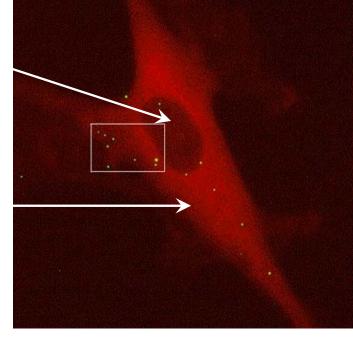
Ideal coupling (neutral)

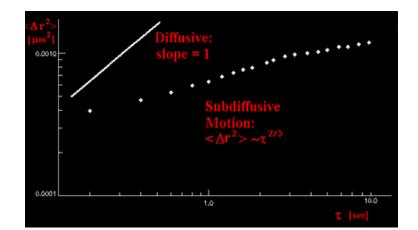
Example: intracellular dynamics



Nucleus

Actin network

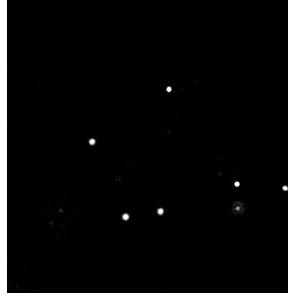




http://www.seas.harvard.edu/projects/weitzlab/research/micrheo.html

Particle tracking by video-microscopy

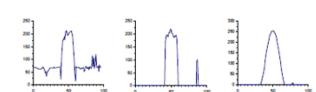
Experimental setup (MMC lab)

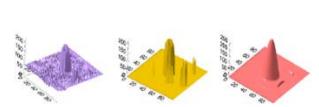


 $\Delta x \text{ et } \Delta y \cong 0.1 \ \mu \text{m}$ $\Delta z \cong 1 \ \mu \text{m}$

Spatial resolution 0.01 s< τ <100 s

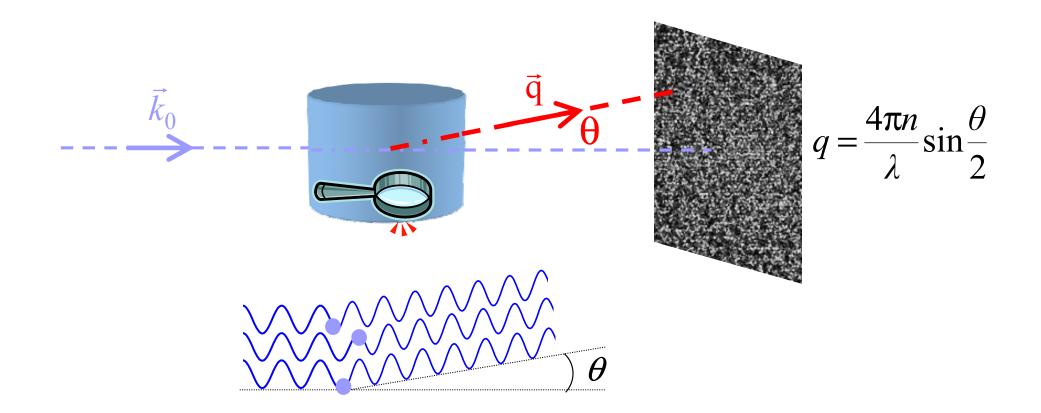






³⁴ J. C. Crocker and D. G. Grier, *Methods of digital video microscopy for colloidal studies*", J. Colloid Interface Sci. **179**, 298 (1996)

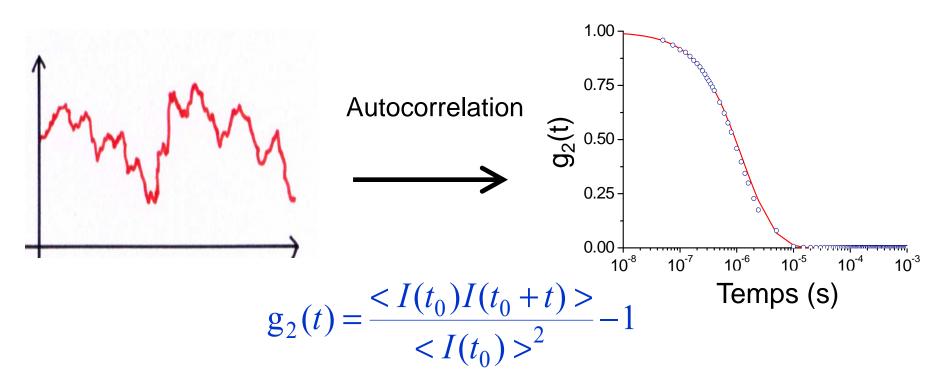
Light scattering



Interferences between photons scattered by the particles in the scattering volume produce a speckle pattern which fluctuates in the course of time

Simple diffusion limit where each photon has been scattered once

Computing $<\Delta r^2(t)>$

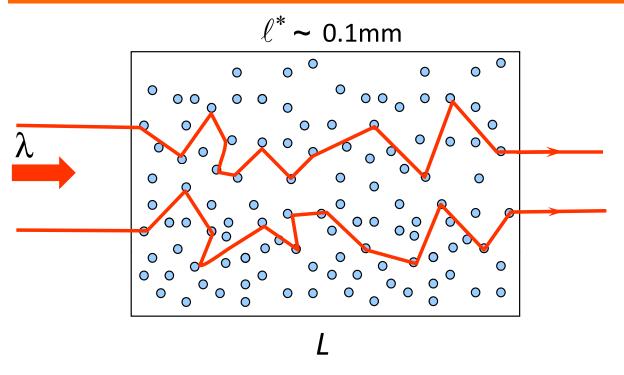


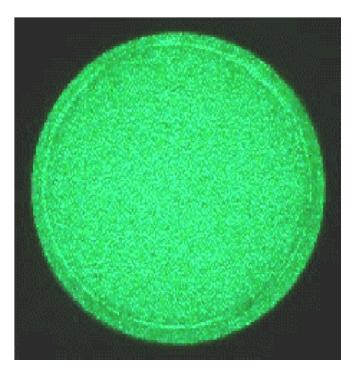
 $g_2(t)$ is related to the mean-square displacement

$$g_2(t) = \exp\left(-\frac{q^2 < \Delta r^2(t) >}{3}\right)$$

Spatial sensitivity : $<\Delta r^2(t) > -\lambda^2$ (typically 0.1 µm²

Multiple light scattering in turbid media





Photons execute a random walk

Each photon is scattered many times: $N \sim (L/\ell^*)^2$

Spatial sensitivity: $\langle \Delta r^2(t) \rangle \sim \lambda^2/N$ (typically 1 nm²) Very short times, i.e. high frequencies, are accessible

Expressions of $g_2(\langle \Delta r^2(t) \rangle)$ depend on the geometry (transmission, backscattering)

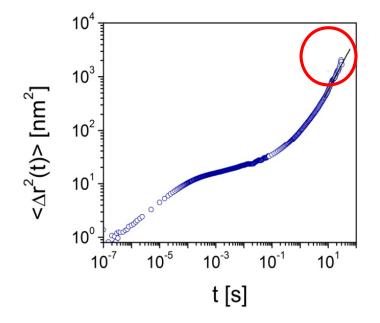
³⁷ Brown, Clarendon Press, Oxford, 1993

D. Weitz and D. Pine, Diffusing Wave Spectroscopy, in Dynamic Light Scattering, Edited by W.

Limitations of scattering techniques

1- Averaging time

Proper averaging requires n = 1000 events. To access t_{max} = 100 s, experiments as long as $10^2 \times 10^3$ =10⁵ s (30 h) are required!

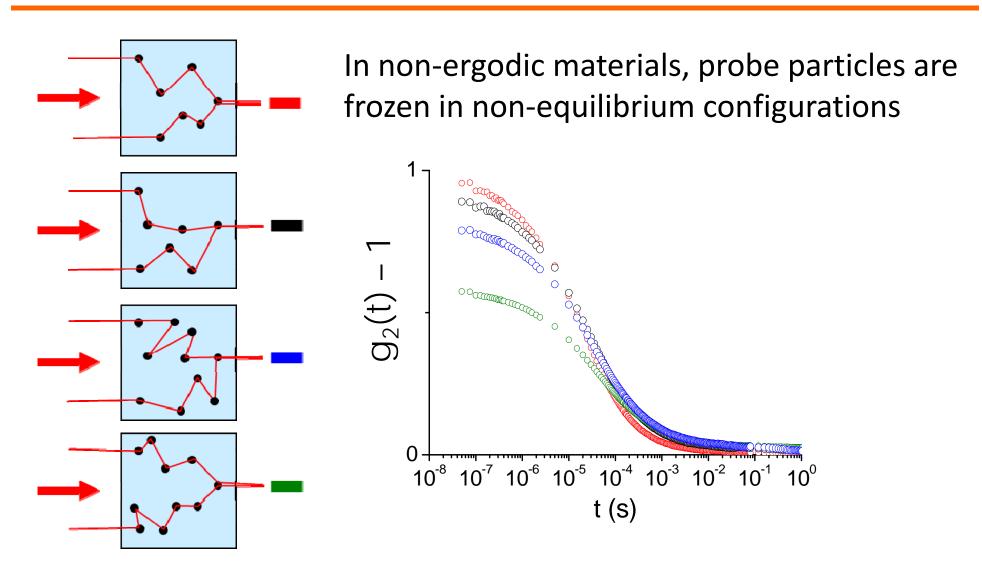


2- Slowly evolving materials in case of aging, aggregation, phase separation.

3- Non ergodic materials

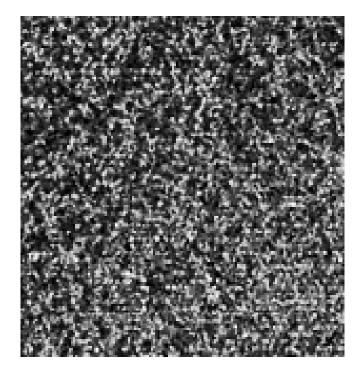
4- Presence of spatial heterogeneities (rheo-DLS and rheo-DWS)

Non-ergodicity



Time-averaged correlation functions depend of observation volume Efficient protocol to get the ensemble-averaged correlation function?

Multispeckle scheme



40

2D speckle patterns are imaged on a CCD camera

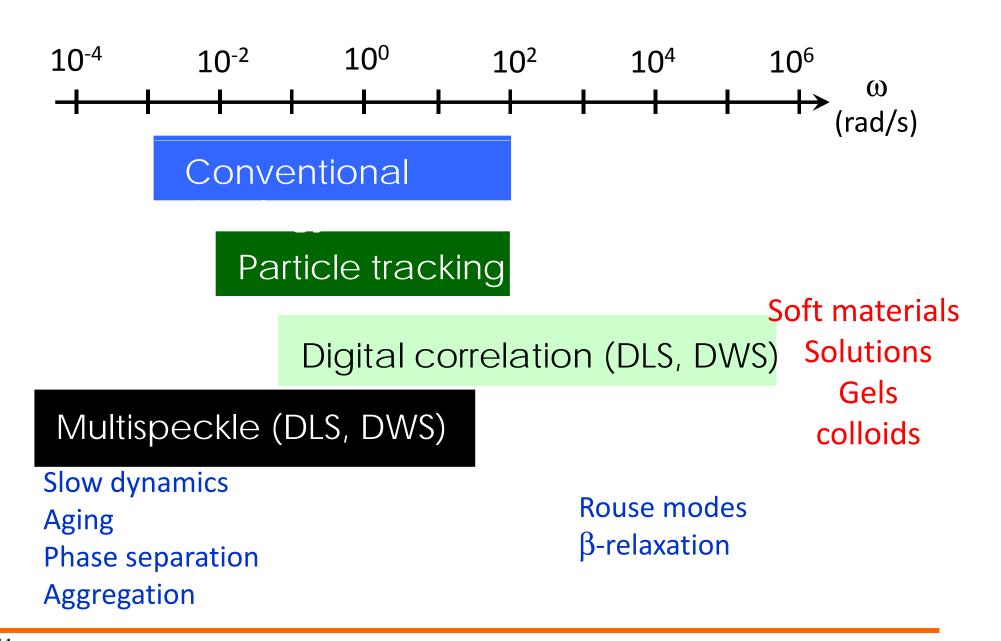
Each speckle is considered as an independent detector

Ensemble-averaged correlation function is calculated by averaging time correlation functions over a great number of speckles:

$$g_2(t) - 1 = \frac{\left\langle I_p(t_0) I_p(t_0 + t) \right\rangle_{p,t}}{\left\langle I_p(t_0) \right\rangle_{p,t}^2} - 1$$

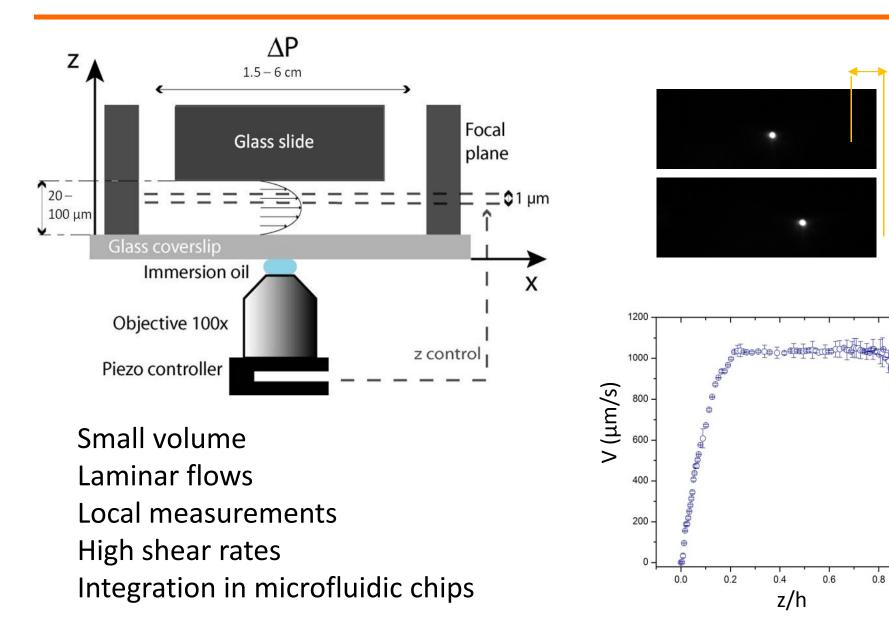
L. Cipelletti and D. A. Weitz, *Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator*, Rev. Sci. Instrum. **70**, 3214 (1999)

Summary



2.3 Microfluidic techniques

Particle image velocimetry



Δt: laser

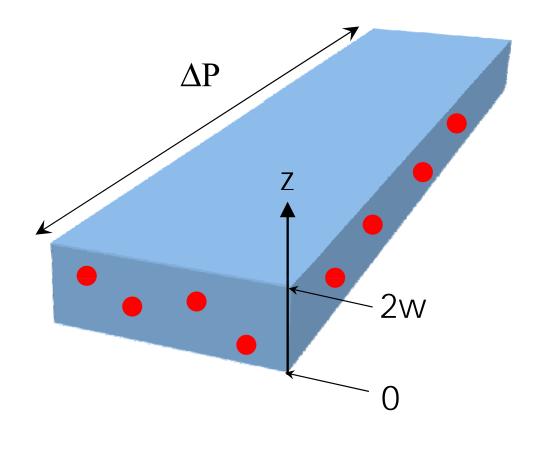
pulse

0 00

0

1.0

Particle tracking in a microchannel



At each location z:

$$\dot{\gamma}(z) = \frac{V(z+dz) - V(z-dz)}{2dz}$$

 $\sigma(z) = \frac{\Delta P}{L} (z - w)$

Velocity profile and flow curve

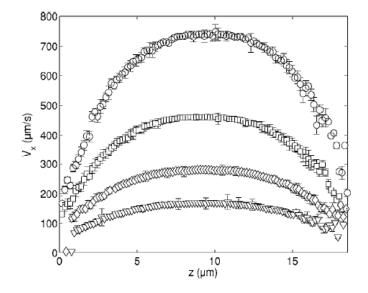


FIG. 2. Velocity profiles for a PEO solution $(M_w=5.10^6 \text{ g/mol}, C = 7.5 \text{ g/L})$ at 27 °C for different pressure drops: (\bigcirc) 122 mbars, (\square) 96 mbars, (\diamondsuit) 71 mbars, and (\bigtriangledown) 52 mbars. The profiles have been measured in that order in a single experiment (total duration of 90 min) at the center of a 1.55 cm long and 18±.05 μ m thick PDMS on a glass microchannel. The glass wall is located at *z*=0 with *a* ~ 200 nm precision. The locus of the PDMS wall, away from the optics, is less precise.

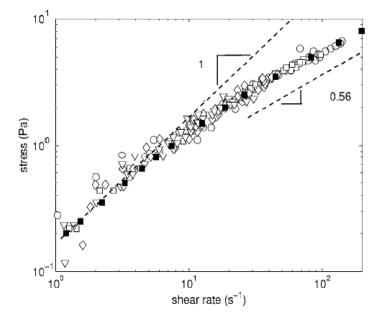
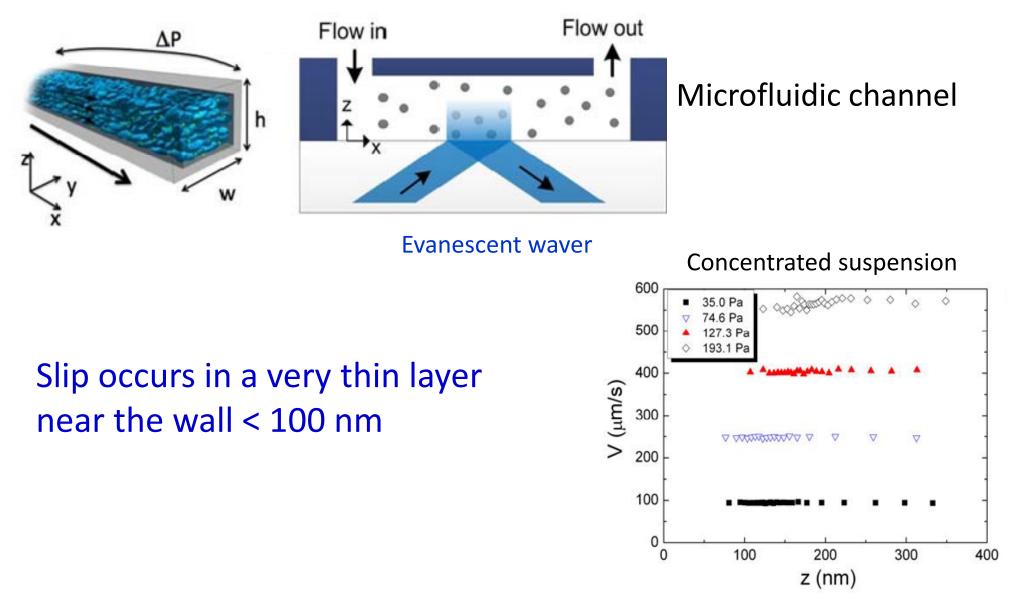


FIG. 3. Stress vs strain rate curve extracted from the velocity profiles of Fig. 2 (same symbols) using the procedure described in the text. The filled squares are independent measurements performed using a Couette rheometer.

G. Degré, P. Joseph, P. Tabeling, S. Lerouge, M. Cloitre & A. Ajdari, Appl. Phys. Lett. 89, 024104 (2006)

Nanoparticle image velocimetry



P. Joseph and P. Tabeling, Direct measurement of the apparent slip length, Phys. Rev. E 71, 035303, 2005

Conformation of molecules in elongational flows



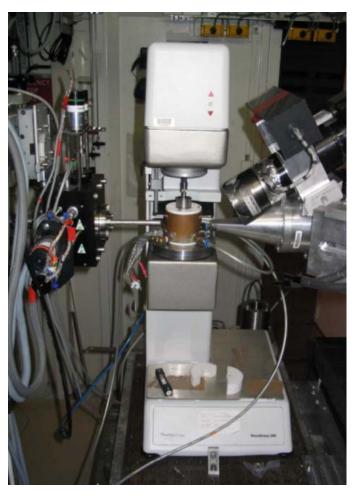
2.4 Rheology and structure

Rheo-SAXS, SANS, DLS

Investigate the structure during flow using SAXS, SANS, and DLS

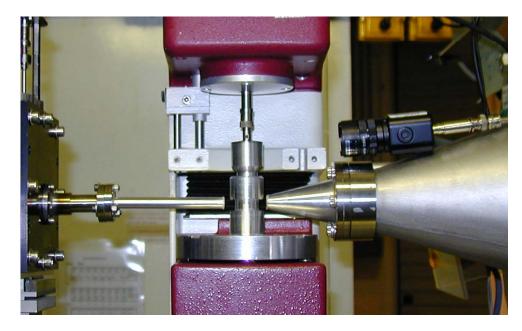
A wide range of length scales can be probed: 10-300 nm for SANS and SAXS 50 nm – 10 μm for DLS

Experimental setups and environments begin to be commercially available

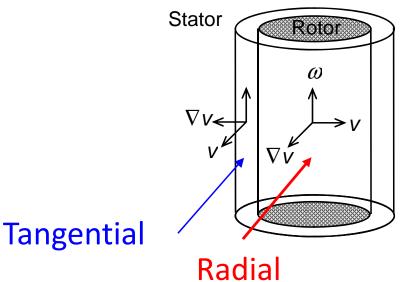


Rheo SAXS at ID2 (ESRF)

Dynamics of triblock copolymer solutions

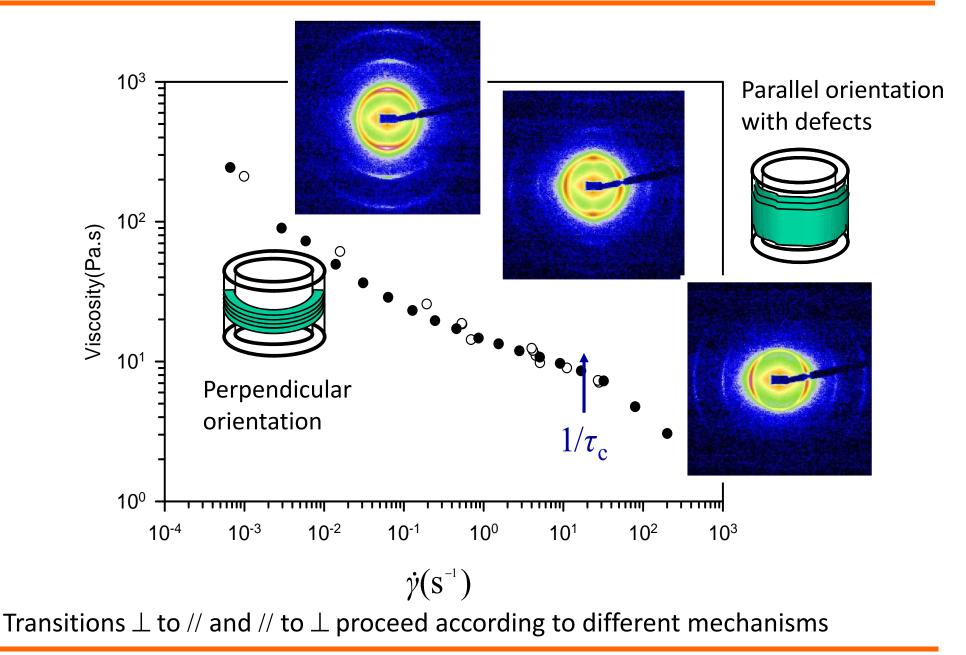


Polystyrene-*b*-polybutadiene-*b*-polymethylmethacrylate (SBM) copolymers in good solvent



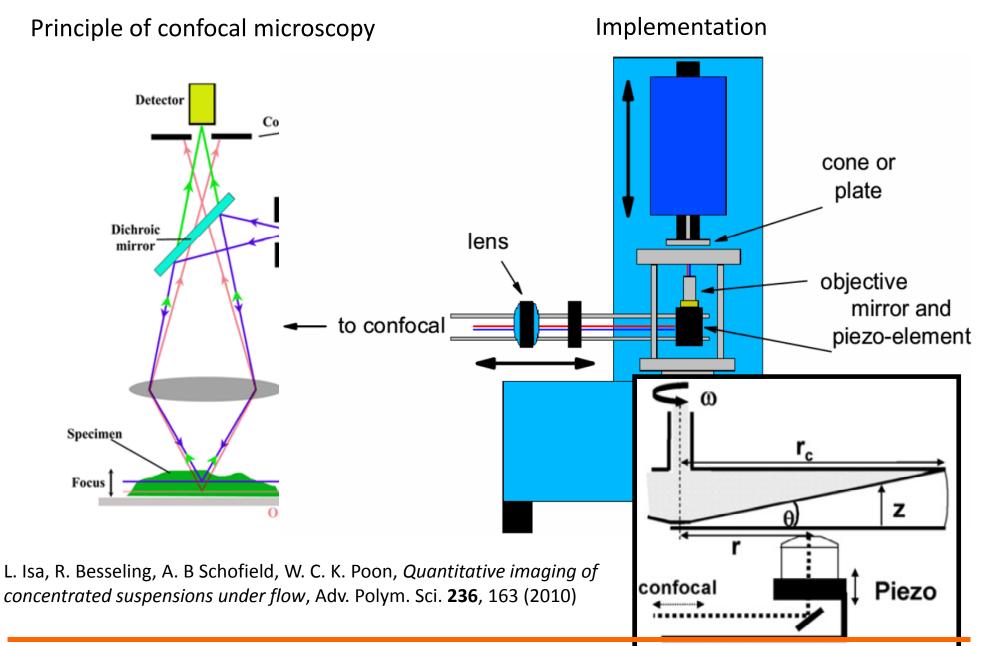
- Beam size : $a \cong 300 \,\mu\text{m}$
- Scan of gap is possible
- Time-resolved experiments (exposure time as low as 10ms)
- Radial and tangential observation

Dynamic orientation diagram of SBM lamellae

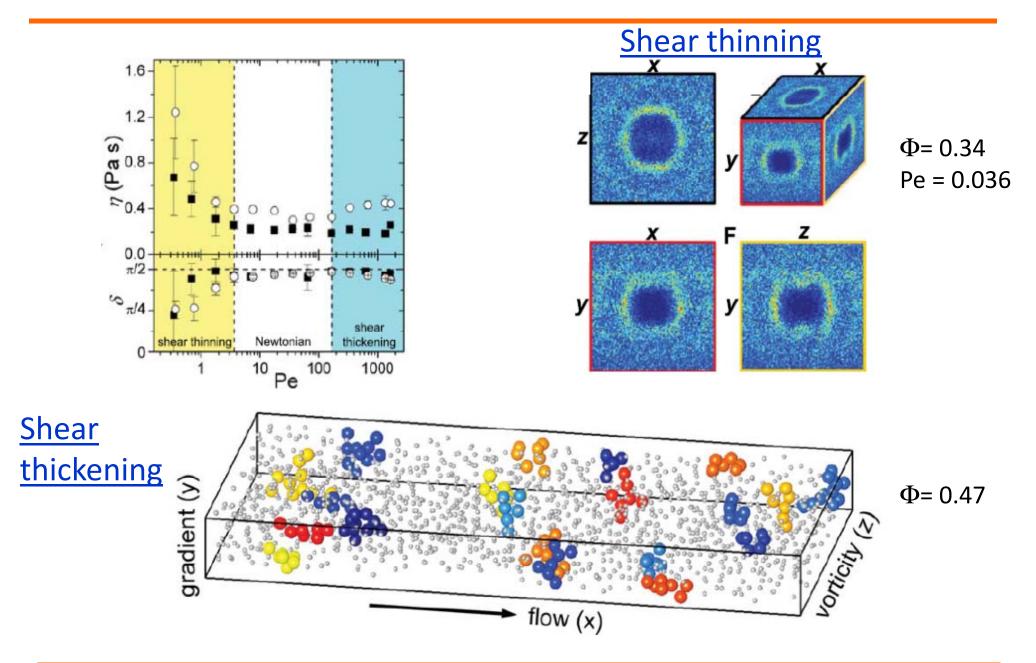


E. Di Cola, C. Fleury, P. Panine, and Michel Cloitre, Macromolecules 41, 3627 (2008)

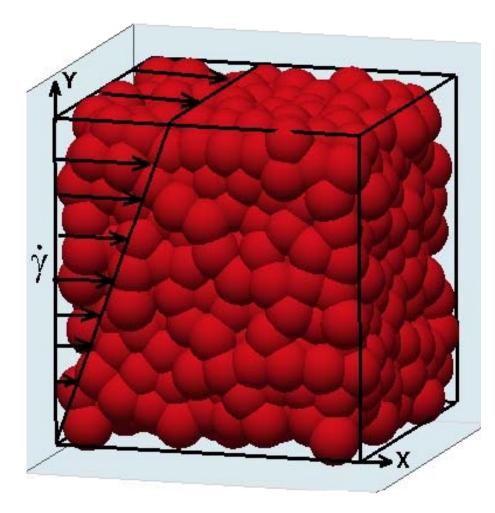
Rheo-confocal microscope



3D imaging of hard sphere suspensions in LAOS



Computational rheology



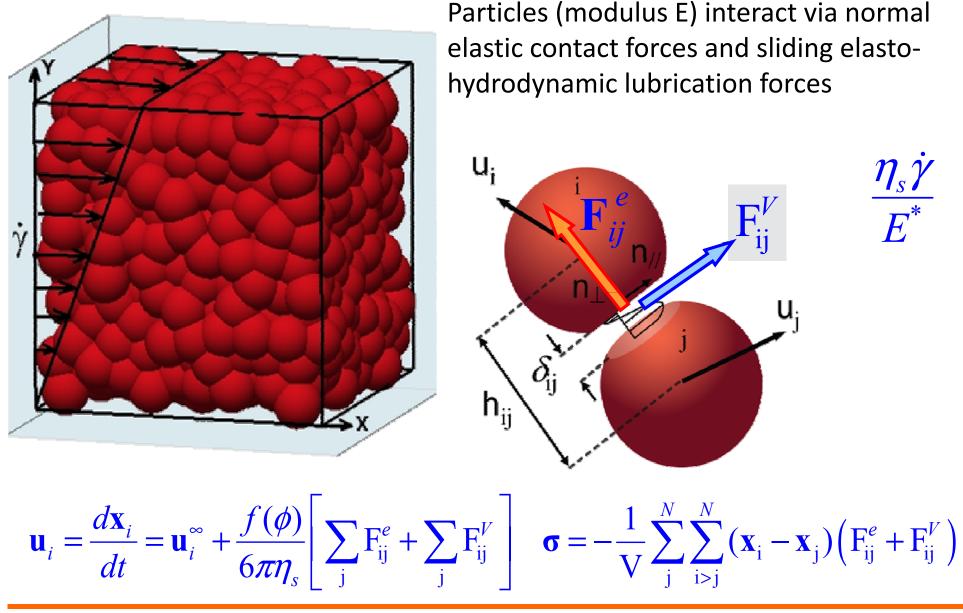
Molecular-like dynamic simulations

Pairwise additive elastic interactions Periodic boundaries No inertia

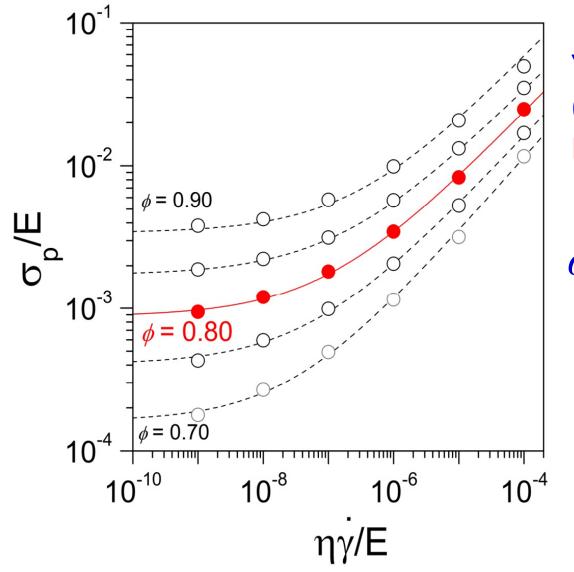
Equation of motion:

$$\frac{d\vec{x}_{i}}{dt} = \vec{u}_{i}^{\infty} + \frac{f(\phi)}{6\pi\eta_{s}} \left[\sum_{j} \vec{F}_{ij}^{e} + \sum_{j} \vec{F}_{ij}^{EHD} \right]$$

Computational rheology of jammed suspensions



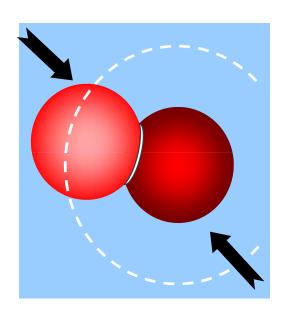
Flow curves

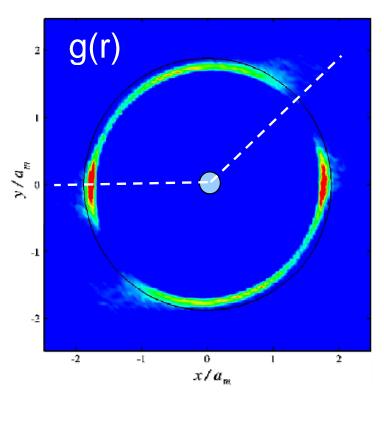


Yield stress behaviour (matches experiments) Microscopic time scale: $\tau_0 = \eta/E$

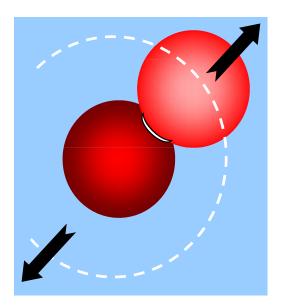
 $\sigma_{\rm p} = \sigma_{\rm y} + k \left(\frac{\eta \dot{\gamma}}{E}\right)^{0.5}$

Computation of pair correlation function





Extension: depletion



Flow causes a redistribution of contacts (radial compression and angular asymmetry) σ , N₁ and N₂ are calculated from g(r)