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We use the 

 

lac

 

 operon in 

 

Escherichia coli

 

 as a prototype
system to illustrate the current state, applicability, and
limitations of modeling the dynamics of cellular networks.
We integrate three different levels of description (molecular,
cellular, and that of cell population) into a single model,
which seems to capture many experimental aspects of the
system.

 

Modeling has had a long tradition, and a remarkable success,
in disciplines such as engineering and physics. In biology,
however, the situation has been different. The enormous
complexity of living systems and the lack of reliable quanti-
tative information have precluded a similar success. Currently,
there is a renewal of interest in modeling of biological systems,
largely due to the development of new experimental methods
generating vast amounts of data, and to the general accessibility
of fast computers capable, at least in principle, to process
this data (Endy and Brent, 2001; Kitano, 2002). It seems
that a growing number of biologists believe that the interactions
of the molecular components may be understood well
enough to reproduce the behavior of the organism, or its
parts, either as analytical solutions of mathematical equations
or in computer simulations.

Modeling of cellular processes is typically based upon the
assumption that interactions between molecular components
can be approximated by a network of biochemical reactions
in an ideal macroscopic reactor. Although some spatial aspects
of cellular processes are taken into account in modeling of cer-
tain systems, e.g., early development of 

 

Drosophila melanogaster

 

(Eldar et al., 2002), it is customary to neglect all the spatial
heterogeneity inherent to cellular organization when dealing
with genetic or metabolic networks. Then, following standard
methods of chemical reaction kinetics, one can obtain a set
of ordinary differential equations, which can be solved
computationally. This standard modeling approach has been
applied to many systems, ranging from a few isolated

components to entire cells. In contrast to what this wide-
spread use might indicate, such modeling has many limitations.
On the one hand, the cell is not a well-stirred reactor. It is a
highly heterogeneous and compartmentalized structure, in
which phenomena like molecular crowding or channeling
are present (Ellis, 2001), and in which the discrete nature of
the molecular components cannot be neglected (Kuthan,
2001). On the other hand, so few details about the actual in
vivo processes are known that it is very difficult to proceed
without numerous, and often arbitrary, assumptions about
the nature of the nonlinearities and the values of the parameters
governing the reactions. Understanding these limitations, and
ways to overcome them, will become increasingly impor-
tant in order to fully integrate modeling into experimental bi-
ology.

We will illustrate the main issues of modeling using the
example of the 

 

lac

 

 operon in 

 

Escherichia coli

 

. This classical
genetic system has been described in many places; for instance,
we refer the reader to the lively account by Müller-Hill
(1996). Here, we concentrate our attention on the elegant
experiments of Novick and Weiner (1957). These experi-
ments demonstrated two interesting features of the 

 

lac

 

regulatory network. First, the induction of the 

 

lac

 

 operon
was revealed as an all-or-none phenomenon; i.e., the pro-
duction of lactose-degrading enzymes in a single cell could
be viewed as either switched on (induced) or shut off (unin-
duced). Intermediate levels of enzyme production observed
in the cell population are a consequence of the coexistence
of these two types of cells (Fig. 1 a). Second, the experi-
ments of Novick and Weiner (1957) also showed that the
state of a single cell (induced or uninduced) could be trans-
mitted through many generations; this provided one of the
simplest examples of phenotypic, or epigenetic, inheritance
(Fig. 1 b). We will argue below that even these two simple
features cannot be quantitatively understood using the
standard approach for modeling of networks of biochemical
reactions. This example will also allow us to explain the
different levels at which biological networks need to be
modeled.

 

The 

 

lac

 

 operon

 

The 

 

lac

 

 operon consists of a regulatory domain and three
genes required for the uptake and catabolism of lactose. A
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regulatory protein, the LacI repressor, can bind to the opera-
tor and prevent the RNA polymerase from transcribing the
three genes. Induction of the 

 

lac

 

 operon occurs when the in-
ducer molecule binds to the repressor. As a result, the repres-
sor cannot bind to the operator and transcription proceeds
at a given rate. The probability for the inducer to bind to the
repressor depends on the inducer concentration inside the
cell. The induction process is thus helped by the permease
encoded by one of the transcribed genes, which brings in-
ducer into the cell. In this way, if the number of permeases is
low, the inducer concentration inside the cell is low and the
production of permeases remains low. In contrast, if the
number of permeases is high, the inducer concentration is
high and the production of permeases remains high.

This heuristic argument is useful for understanding the
presence of two phenotypes, but it does not actually explain
why the cells remain in a given state, or what makes the cells
switch from the uninduced to the induced state. One needs
quantitative approaches to understand the dynamics of this
process, how the intrinsic randomness of molecular events
affects the system, and how induction depends on the mo-
lecular aspects of gene regulation.

 

Levels of organization and modeling

 

Despite its apparent simplicity, the 

 

lac

 

 operon system dis-
plays much of the complexity and subtlety inherent to gene
regulation. In principle, its detailed modeling should in-
clude, among many other cellular processes, transcription,
translation, protein assembly, protein degradation, binding
of different proteins to DNA, and binding of small mole-
cules to the DNA-binding proteins. In addition, the 

 

lac

 

 op-
eron system is not isolated from the rest of the cell. Induc-
tion changes the growth rate of individual cells, which in
turn also affects the cell population behavior. For instance, if
a gratuitous inducer is used, induction will slow down cell
growth. Therefore, extrapolating directly from the molecular
level all the way up to the cell population level requires addi-
tional information about cellular processes that is not readily
available. Moreover, most of the molecular details of the cell
are not going to be relevant for the particular process under
study. The first step of modeling is, therefore, to identify the
relevant levels, their interactions, and the way one level is in-
corporated into another. Fig. 2 illustrates schematically the
separation of the 

 

lac

 

 system into molecular, cellular, and
population levels.

 

Molecular level. 

 

The molecular level explicitly includes
the binding of the inducer to the repressor, changes in re-
pressor conformation, binding of the repressor to the opera-
tor, binding of the RNA polymerase to the promoter, initia-
tion of transcription, production of mRNA, translation of
the message, protein folding, and so forth. Almost all the
quantitative aspects of the in vivo dynamics of these pro-
cesses are unknown. The lack of information is typically
filled out with assumptions based on parsimony. Fortu-
nately, not all the details are needed. At this level, what
seems relevant is the production of permeases expressed as a
function of the inducer concentration inside the cell. To ob-
tain theoretically even a rough approximation of this func-
tion, one would need detailed information about many mo-
lecular interactions. Therefore, a more reasonable approach
at the present stage of knowledge would be to extract this
function directly from the experimental data. Indeed, one
can measure the rate of production of 

 

�

 

-galactosidase in mu-
tant strains lacking the permease (Herzenberg, 1958). In this
case, external and internal inducer concentrations are both
the same once equilibrium between the medium and the cy-
toplasm is reached. This relies on the absence of nonspecific
import or export mechanisms. The other key piece of infor-
mation is that the production of permeases is, to a good ap-
proximation, proportional to the production of 

 

�

 

-galactosi-
dase, as both are produced from the same polycistronic
mRNA. The results obtained in this way could be used as an
estimate for modeling the molecular level of wild-type cells.

 

Cellular level. 

 

The core of the all-or-none process resides
at the cellular level. Some of the permeases produced will
eventually go to the membrane and bring more inducer.
Novick and Weiner (1959) inferred from experiments that
only a few percent of the permeases integrate into the
membrane and become functional. Recent experiments,
however, showed that the majority of the permeases inte-
grate in the membrane (Ito and Akiyama, 1991), yet the
question of how many are functional has not been ad-

Figure 1. Different induction states. (a) All-or-none phenomenon. 
For low inducer concentrations, the enzyme (�-galactosidase) 
content of the population increases continuously in time. This 
increase is proportional to the number of induced cells, represented 
here by full ellipses. Empty ellipses correspond to uninduced cells. 
(b) Maintenance concentration effect. When induced cells at high 
inducer concentration are transferred to the maintenance concen-
tration, they and their progeny will remain induced. Similarly, when 
uninduced cells at low inducer concentration are transferred to the 
maintenance concentration, they and their progeny will remain 
uninduced.
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dressed. Despite intense studies on the permease (Kaback et
al., 2001), its in vivo functioning is still a challenging issue,
which includes many open questions, such as the mecha-
nisms of insertion into the membrane. The simplest assump-
tion for modeling is that the produced permeases are in-
serted into the membrane and become functional with a
constant probability rate. We believe this to be the weakest
point of our model. In view of the all-or-none phenomenon,
single-cell studies on the concentration and the functional
state of the permeases would be extremely useful using tech-
niques that are now available (Thompson et al., 2002).

 

Population level. 

 

Induction of the 

 

lac

 

 operon changes the
growth rate of the cells. When lactose is the sole carbon
source, induction allows cells to grow. For gratuitous in-
ducers, like the one used in Novick and Weiner (1957) ex-
periments, the situation is just the opposite: induction
slows down the growth rate. This slowing down seems to be
connected with the number of permeases in the membrane
(Koch, 1983). At this level, it seems adequate to use a stan-
dard two-species population dynamics model. The growth
rates for induced and uninduced cells are known from the
experiments. The cellular level is integrated into the popu-
lation level by considering the induced–uninduced switch-
ing rates. These rates can be obtained by modeling at the
cellular level by computing the probability for an unin-
duced cell to become induced and for an induced cell to be-
come uninduced.

 

The model

 

The preceding discussion seems to indicate that three vari-
ables are relevant for the description of the functioning of the

 

lac

 

 system. These are the concentrations of nonfunctional
permease (

 

Y

 

), of functional permease (

 

Y

 

f

 

), and of inducer in-
side the cell (

 

I

 

). Another variable that we need to incorporate
explicitly in the model is the concentration of 

 

�

 

-galactosidase
(

 

Z

 

), which is the quantity measured in the experiments.
Now, we are ready to model the dynamics of the induc-

tion process by writing down the phenomenological dynam-
ical equations for these variables:

Here, 

 

I

 

ex

 

 is the external inducer concentration; 

 

g

 

, 

 

b

 

1

 

, 

 

b

 

2

 

,

 

a

 

1

 

, 

 

a

 

2

 

, and 

 

a

 

3

 

 are constants; and 

 

f

 

1

 

, 

 

f

 

2

 

, and 

 

f

 

3

 

 are functions
of their respective arguments. The molecular level descrip-
tion enters the equations through the specific form of 

 

f

 

1

 

,

 

f

 

2

 

, and 

 

f

 

3

 

. 

 

f

 

1

 

(

 

I

 

) is the production rate of permeases as a
function of the internal inducer concentration. As ex-
plained above, it can be obtained from experiments. It be-

dY
dt
------ f1 I( ) a1Y,–=

dYf

dt
------- b1Y a2Yf,–=

dI
dt
----- f2 Iex( ) f3 I( )–[ ]Yf b2Iex a3I,–+=

dZ
dt
------ g f1 I( ) a3Z.–=

Figure 2. Three levels of description. (a) Molecular level. The three genes lacZ, lacY, and lacA are cotranscribed as a polycistronic message 
from a single promoter P1. The gene lacZ encodes for the �-galactosidase, which can either break down lactose into �-D-galactose and D-glucose 
or catalyze the conversion of lactose into allolactose, the actual inducer. The product of lacY is the �-galactoside permease, which is in charge of 
the uptake of lactose inside the cell. The role of LacA is not yet fully understood because its product, a galactoside acetyltransferase, is not 
required for lactose metabolism (Wang et al., 2002). The lac repressor is encoded by lacI, which is immediately upstream of the operon. Binding 
of the repressor to the main operator site O1 prevents transcription. Repression is greatly enhanced by the additional simultaneous binding of 
the repressor to one of the auxiliary operator sites O2 and O3. The inducer inactivates the repressor by binding to it and changing its conformation. 
Additionally, the CAP–cAMP complex must bind to the activator site, A, for significant transcription. (b) Cellular level. Some gratuitous inducers, 
such as TMG, also use the lactose permease to enter the cell; but in contrast to lactose, they bind themselves to the repressor and are not 
metabolized by the cell. In this case, it is possible to study the dynamics of induction by considering as variables only the internal inducer 
concentration, the nonfunctional permeases, and the functional permeases. (c) Population level. Coexistence of two types of networks in the 
lac operon is a population effect. Uninduced cells (empty circles) have some probability to become induced (full circles). If uninduced cells 
grow faster, both types of cells could coexist; if not, the entire population will eventually be induced.
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haves like a quadratic polynomial for low inducer concen-
trations (

 

f

 

1

 

[

 

I

 

] 

 

�

 

 

 

c

 

1

 

 

 

�

 

 

 

c

 

2

 

I

 

 

 

�

 

 

 

c

 

3

 

I

 

2

 

, with 

 

c1, c2, and c3

constants) and increases monotonically until it saturates
for high concentrations. The functions f2(Iex) and f3(I) ac-
count for the inducer transport by the permease in and
out of the cell and are assumed to depend hyperbolically
on their argument.

With only these four equations one can explain the fact
that there are inducer concentrations, Iex, for which the
cells remain induced, if they were previously induced, or
uninduced, if they were uninduced. In mathematical
terms, this happens because the equations have two stable
solutions for such values of Iex and the system thereby ex-
hibits “hysteresis.” Thus, the standard modeling approach
can apparently explain the existence of the so-called main-
tenance concentration.

There are many variations of this simple model. The first
one, proposed already by Novick and Weiner (1957), was
even simpler and explained to some extent the main features
observed in the experiments (Cohn and Horibata, 1959a,b).
In fact, subsequent, much more complex models, based on
the standard biochemical reaction kinetics approach, did not
provide any substantial additional insight. They basically
showed that the observed behavior is also compatible with
more intricate kinetics (Chung and Stephanopoulos, 1996).

To fully understand the all-or-none phenomena, the stan-
dard approach is, however, not enough. One needs to take
into account stochastic events to explain why, at some point,
just by chance, a cell becomes induced. The classical ap-

proach is unable to explain the switch from the uninduced
to the induced state. Fortunately, it is possible to write down
a stochastic counterpart of the previous equations. This is
done by transforming the different rates (production, degra-
dation, etc.) into probability transition rates and concentra-
tions into numbers of molecules per cell. Then, one can sim-
ulate the dynamical behavior of the four random variables
governed by such stochastic equations on a computer (Gil-
lespie, 1977).

Fig. 3 a shows representative time courses of the �-galac-
tosidase content obtained from such computer simulations
for cells placed under suboptimal induction conditions. At
the single-cell level, there is a fast switch from the nonin-
duced to the induced state. The time at which this transition
happens is a result of the intrinsic stochastic nature of bio-
chemical reactions and strongly varies from cell to cell (e.g.,
yellow, green, and blue lines in Fig. 3 a). In contrast, the cell
average exhibits a smooth behavior. In this case, the behav-
ior of the single cell and the behavior of the cell average are
thus completely different. As a consequence, classical reac-
tion kinetics cannot be used and has to be replaced by a sto-
chastic approach. This type of approach started to be applied
in the 1940s (Delbrück, 1940) and was already well estab-
lished in the late 1950s (Montroll and Shuler, 1958). Only
recently, however, has there been a renewed widespread ef-
fort to understand the role of stochasticity in cellular pro-
cesses (Rao et al., 2002).

One should stress that even the stochastic approach is still
unable to fully explain the experiments. In the simulations,

Figure 3. Modeling results. (a) Single-
cell, cell average, and population 
behavior. The thin (yellow, green, and 
blue) color lines correspond to represen-
tative time courses of �-galactosidase 
content obtained from computer simu-
lations for single cells at 7 �M TMG. The 
observed differences in switching times 
from noninduced to induced states result 
from the stochastic behavior of the 
model. The thick continuous black line 
is the average over 2,000 cells. The 
dashed black line is the population 
�-galactosidase content. To obtain the 
population results, we have considered 
in the simulations that induced cells 
grow slower than uninduced ones. 
(b) Maintenance concentration. Represen-
tative time courses of the �-galactosidase 
content obtained for induced (top) and 
uninduced (bottom) cells transferred to 
the maintenance concentration (5 �M 
TMG) at time 0. Note the semilogarithmic 
scale. (c) Same as in panel a but now 
for cells at 500 �M TMG. In this case, 
the cell average and population 
�-galactosidase content are indistin-
guishable. (d) Simulation versus experi-
ments. Induction for 500 �M TMG at the 
population level. The black line is the 
same as in panel c. Red dots represent 
experimental values obtained by Novick 
and Weiner (1957). The dashed line is the same as the black line but shifted to the left 0.33 generations. It illustrates that the main differences 
between simulations and experimental results come from the early stages of induction.
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all the cells eventually become induced. In the experiments,
the production of �-galactosidase for suboptimal inducer
concentrations seems not to saturate at the maximum value,
which is an indication of the coexistence of the induced and
uninduced cells. As explained before, the reason for this is
that the induced and uninduced cells grow at a different
rate. Therefore, we have to consider the dynamics of the cell
population. Only when this is taken properly into account
are the simulations in agreement with experiments, as shown
by the dashed line in Fig. 3 a.

The fact that fluctuations make cells switch from the un-
induced to the induced state forces us to reconsider whether
there really exists a maintenance concentration in the model.
Is there a range of inducer concentrations for which the cells
do not switch at an appreciable rate from one state to an-
other? Fig. 3 b shows the single-cell behavior for cells that
were previously induced or uninduced at the expected main-
tenance concentration. Indeed, in the simulations we per-
formed for 1,000 cells, we recorded no single switching from
one state to another; for realistic values of probability rates
such switching events would be too rare to be observed. The
stochastic model seems to be thus compatible with the exist-
ence of the maintenance concentration.

So far, we have pointed out just a few of the many limita-
tions of the standard modeling approach and how to over-
come them. Considering stochastic and population effects
greatly increases the complexity of modeling. In general,
whether or not we should consider all of these effects de-
pends not only on the given system but also on the particu-
lar conditions. For instance, an approach taking into ac-
count all three levels of description is not needed when the
lac operon is induced at high inducer concentrations. In this
case, the single-cell picture, the average over independent
cells, and the population average all give very similar results,
as can be seen in Fig. 3 c. Therefore, it should be possible
here to use standard kinetic equations and avoid most of the
hassle encountered beyond the standard approach. The
main problem, however, is that there is no general a priori
method to tell whether or not the standard modeling ap-
proach would be sufficient to describe the given system.

In Fig. 3 d we compare experimental and simulation re-
sults. There are some differences: the rise in �-galactosidase
activity is faster in the experiments than in the simulations.
In addition, coming back to Fig. 3 b, one can see that there
is a small drop in �-galactosidase content when cells are
transferred from high to maintenance inducer concentra-
tions. This drop is not present in the experiments (see Fig. 3
in Novick and Weiner, 1957). One cannot infer from the
model whether these differences are a matter of details or of
a more fundamental aspect of the lac system. The addition
of more molecular details into a model (Carrier and Keas-
ling, 1999) does not necessarily lead to better agreement
with the experimental observations. The lac operon example
clearly illustrates the complexity of modeling even the sim-
plest networks.

Evolutionary and physiological levels
The type of models and experiments that we have discussed
can provide valuable information about the mechanistic

structure of the lac operon. But, to really understand the
functioning and underlying logics of cellular networks, one
needs to consider them in their natural environment. Only
then is it possible to relate the network structure to the func-
tion it has acquired through evolution (Savageau, 1977). In
the case of the lac operon of E. coli, induction usually takes
place in the mammalian digestive tract under anaerobic con-
ditions (Savageau, 1983), and the inducer is allolactose, a
metabolic product of lactose, rather than gratuitous induc-
ers, such as IPTG or thiomethyl-�-D-galactoside (TMG).*
In addition, there can be other factors that can affect the in-
duction process itself. For instance, recent genetic studies
have uncovered a novel set of sugar efflux pumps in E. coli
that surprisingly can pump lactose outside of the cell (Liu et
al., 1999a,b)! The physiological role of these pumps has just
started to be investigated.

Discussion
The example of the lac operon switch has been used here to
illustrate the current state, applicability, and limitations of
modeling of cellular processes. We have not tried to expose
all the potential that modeling possesses; there are now
many published reviews advertising this aspect. Rather, we
have tried to use one of the simplest and best-studied exam-
ples to show the intricacy of modeling biological networks.
Some ideas that we would like to emphasize are as follows.

First, standardized modeling methods cannot be ap-
plied “automatically” even in a case as simple as the one
we have described. One needs first to identify the relevant
variables, adequate approximations, etc. Adding more
equations to include more details of interactions does not
usually help. If more molecular details are considered,
one can easily end up with huge sets of equations, but un-
less the relevant elements are identified, the model will
remain useless. The problem is thus more conceptual
than technical. In the case we have discussed, a four-
equation model is able to explain the main results of the
experiments of Novick and Weiner (1957), provided that
fluctuations and population effects, which are usually
overlooked, are taken into account.

Second, one of the main reasons for the success of models
in matching the experimental results is that the experiments
are kept under constant conditions and only a few variables
are changed. This allows the use of effective (fitting) param-
eters in the equations.

Third, networks are isolated neither in space nor in
time. They form part of a unity that has been shaped
through evolution. It is important not to disregard a pri-
ori any of the many complementary levels of description:
molecular, cellular, physiological, population, intrapopu-
lation, or evolutionary.

In our opinion, because of these and similar reasons, pro-
ductive modeling of biological systems, even in the “post-
genomic era,” will still rely more on good intuition and skills
of quantitative biologists than on the sheer power of com-
puters.
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