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1 When can we neglect diffusion ?

When the Peclet number is not very small we cannot ignore the convection term in the trans-
port equation. The first question that we might ask is : are there situations where we cannot
completely ignore the diffusion term ? We have already mentioned that there are similarities bet-
ween the transport equations for heat and mass and the equation of evolution of vorticity in a
two dimensional flow of a newtonian fluid. We know that ignoring completely the viscosity of the
fluid leads to non physical results for fluid flows : if we do not take into account the existence of
viscous boundary layers, it is impossible to derive correctly the drag force on an object. There are
many situations in transport of heat and mass where there are also boundary layers but for the
temperature or concentration field and we will have to take into account the diffusion term (even
at Pe� 1) to derive the heat and mass fluxes towards a solid boundary.

But before analyzing these boundary layer situations, let’s go back to the question : when can
we ignore the diffusion term ? Figure 1 illustrates the mixing of a dye within a liquid by a flow
field, periodic in time, which is designed to produce alternative stretching and folding of the initial
dye spot. The diffusion coefficient of the dye is so small (typical values are 10−9 or 10−10 m2/s)
that even if the dye is stretched in very thin filaments, the concentration contrast between the
dyed and the undyed fluid remains very sharp. Eventually, but after a very long time, diffusion
will play a role to smooth out the strong concentration gradients. At the beginning of this mixing
process,we can ignore diffusion and analyze the problem by considering only the advection of fluid
particles by the flow field. The design of flow fields which are able to stretch and fold an initially
localized blob of material is crucial for the efficient mixing of liquids at low Reynolds number,
either in microfluidic devices or in macroscopic mixers for very viscous fluids such as polymer
melts. We will discuss these mixing strategies later, but for now we consider the interplay between
convection and diffusion.

2 Coupling convection-diffusion

2.1 A simple problem : uniform velocity perpendicular to the concen-
tration gradient

2.1.1 Simplifying the transport equation

To understand the coupling between convection and diffusion, let us start with a simple pro-
blem : a Y junction in a microfluidic device (fig. 2). The flow rates in the two inlets are equal.
In one of the inlets we introduce a liquid with a soluble dye (say water with fluoresceine), in the
other inlet the same liquid but without dye. Downstream of the inlets, the flow within the channel
is a Poiseuille type laminar flow with a single component of velocity ux(y, z) depending on the
transverse coordinates y and z. Some of you already used this kind of device in the fluid mecha-
nics laboratory sessions to determine the diffusion coefficient of fluoresceine. In the experiment,
we start with a device completely filled with water, then we introduce the dyed fluid in one of the
inlets. After some time, say a few minutes, the concentration field, measured by the fluorescence
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Figure 1 – Flow (at very low Reynolds number) of a liquid due to the rotation of two excentric
cylinders. Left : stretching and folding of an initially localized spot of dye, after 12 periods of
alternative rotation of the inner and outer cylinders (après 12 périodes de rotation). Center :
streamlines when the inner cylinder is rotating. Right : streamlines when the outer cylinder is
rotating. Figures reproduced from Chaiken, Chevray, Tabor et Tan, Proc. Roy. Soc. A408 165
(1986)

intensity, is steady. This steady state concentration field c is described by the convection diffusion
equation :

u.∇c = ux(y, z)
∂c

∂x
= D∆c (1)

where D is the diffusion coefficient of the dye.

Figure 2 – Geometry of the microfluidics Y junction.

At the inlet, the dye concentration has a step profile : in the lower half of the channel (y < a/2),
c = 0 and the upper half (y > a/2), c = c0. The large concentration gradient in the middle of the
channel will create a flux of dye from the upper half to the lower half and, as the dye is advected
downstream by the flow, the width δ of the transition zone between the two sides will become
wider and wider. We know, from a scaling analysis of the diffusion equation that δ should increase
with

√
Dt where t is the amount of time available to diffuse. We are dealing here with a steady

state problem so instead of t, we have to use x/U where x is the position along the channel and
U is the mean velocity of the fluid. So we get :

δ ∝
√
Dx/U. (2)

This is exactly the same type of argument that was used to define the width of a viscous boundary
layer and the essential of the physics is contained in the scaling relation (2). But we will proceed
to solve analytically the transport equation.
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Now, let us suppose that δ remains small compared to the channel width a. Then, in the middle
of the channel (±δ) the velocity has a value which is very close U0 and for the transport equation,
we can make the approximation ux ≡ U0 and the equation becomes :

U0
∂c

∂x
= D∆c. (3)

At the inlet, the concentration depends on the transverse coordinate y, but we can assume that
it is uniform in the third dimension z and that c will remain independent of z downstream. If we
assume that δ < a� L, the components of the concentration gradient are, in order of magnitude :
∂c/∂x ≈ c0/L and ∂c/∂y ≈ c0/δ, so that ∂c/∂y � ∂c/∂x and we can make the approximation
∆c ≈ ∂2c/∂y2. The transport equation is then :

U0
∂c

∂x
= D

∂2c

∂y2
. (4)

We have to solve it with the boundary conditions c = c0 at x = 0, a > y > a/2 and c = 0 at x = 0,
0 < y < a/2. Strictly speaking, downstream of the inlet (x > 0) we have a condition of zero flux
at the boundaries of the channel (at y = 0, a), but since we made the assumption that δ < a we
can use a boundary condition at infinity c→ c0 when y →∞ and c→ 0 when y → −∞.

2.1.2 Equation in dimensionless variables and self-similar solutions

To solve the equation, it is convenient to rewrite it with dimensionless variables : ĉ = c/c0,
x̂ = x/a and ŷ = (y − a/2)/a, where we choose the channel width as a lengthscale :

∂ĉ

∂x̂
=

D

U0a

∂2ĉ

∂ŷ2
=

1

Pe

∂2ĉ

∂ŷ2
(5)

and we introduced the Peclet number based on the channel width, Pe = U0 a/D. The boundary
conditions are then at x̂ = 0, ĉ = 1 if ŷ > 0, ĉ = 0 if ŷ < 0 and, when x̂ > 0, ĉ→ 1 if ŷ →∞, ĉ→ 0
if ŷ → −∞. The equation reduces formally to a simple diffusion equation and we can use different
techniques to solve it. Here we seek self-similar solution of the form ĉ = f(ζ = ŷ/δ̂) where :

δ̂ =
δ(x)

a
=

√
Dx

a2U0
=

√
D

aU0

√
x

a
= Pe−1/2x̂1/2

and the rescaled variable in the y direction ζ is :

ζ =
ŷ

δ̂
= ŷx̂−1/2Pe1/2.

We rewrite eqn. 5 with variable ζ using

∂2ĉ

∂ŷ2
=
d2ĉ

dζ2

(
∂ζ

∂ŷ

)2

=
1

δ̂2
d2ĉ

dζ2
=
Pe

x̂

d2ĉ

dζ2

and
∂ĉ

∂x̂
=
dĉ

dζ

∂ζ

∂x̂
= −1

2
ŷx̂−3/2Pe1/2

dĉ

dζ
= −1

2

ζ

x̂

dĉ

dζ
:

− 1

2
ζ
dĉ

dζ
=
d2ĉ

dζ2
. (6)

Using the rescaled variable ζ we have transformed the transport equation into an ordinary differen-
tial equation (instead of a P.D.E.) which we can solve more easily noting that dx(exp(−x2/4)) =
−x/2 exp(−x2/4). Hence we have : dĉ/dζ = A exp(−ζ2/4) and :

ĉ = A

∫ ζ

0

exp(−u2/4) du+B or ĉ = A′
√
π

2
erf(ζ/2) +B (7)
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The appropriate boundary conditions with the rescaled variable are ĉ→ 1 if ζ →∞ and ĉ→ 0 if
ζ → −∞. The limits of the error function are ±1 at ζ → ±∞, so the dimensionless concentration
is given by

ĉ =
1

2
[1 + erf(ζ/2)] (8)

and in dimensional variables :

c =
c0
2

[
1 + erf

(
y

2

√
U0

Dx

)]
(9)

This self-similar concentration field is shown on fig. 3 together with profiles in the y direction at
different locations in x.

Figure 3 – Self-similar concentration profiles which are solutions of eqn. 6

The solutions derived above are valid only on the condition that δ, the thickness of the diffusion
layer, remains small compared to the width of the channel a. Since δ(x) =

√
U0x/D, its maximum

value is δ(L) =
√
U0L/D. So the condition is :√

U0L

D
= a

√
U0

Da

√
L

a
� a or Pe� L

a
. (10)

We could anticipate a condition of the type Pe � 1 since the scaling relation (2) implies that
δ increases with

√
Pe, but we have a more precise condition involving the aspect ratio L/a of

the channel. We can test this criterion by solving numerically the transport equation for various
values of the Peclet number. Some numerical solutions are shown on fig. 4 for an aspect ratio
L/a of 10. When Pe = 8 < L/a, lateral diffusion is rather fast compared to convection and the
transverse gradient of concentration disappears almost completely at x = 4a. On the other hand,
when Pe = 833� L/a, the thickness of the diffusion layer remains much smaller than a and the
transverse concentration profiles are accurately described by the self similar solutions (9).

2.1.3 Transverse fluxes

From the solution for the concentration field, it is possible to compute the transverse flux
of mass. To understand the physics, an order of magnitude calculation is sufficient : the local
vertical concentration gradient ∂c/∂y can be approximated as C0/δ(x) and the local mass flux is
−DC0/δ(x), the total mass exchange per unit time along the channel (per unit width in the z
direction) is then :

Jtotal =

∫ L

0

−D C0

δ(x)
dx = −DC0

∫ L

0

√
U

D
x−1/2dx = −2DC0

√
U

D

√
L (11)
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Figure 4 – Diffusion within a two dimensional channel of aspect ration L/a = 10. The flow has
a parabolic velocity profile. At the inlet, the concentration is 1 in the top half, 0 in the bottom
half. Left, concentration fields. Right vertical concentration profiles at x = 2a, 4a, 6a, 8a and 10a.
Top, Pe = 8, middle, Pe = 83, bottom, Pe = 833.

We can rearrange this expression as follows :

Jtotal = −2DC0

a
L

√
Ua

D

√
a

L
= 2Jdif

√
Pe

a

L
(12)

where we have used the Peclet number already defined and where Jdif = DC0/a × L would be
the purely diffusive flux resulting from a transverse concentration gradient on the length scale a,
integrated over the channel length L.

The ratio between Jtotal and Jdif is called the Sherwood number Sh ; it shows the enhancement
of transport due to the interplay between convection and diffusion. The self similar solutions are
valid if Pe � L/a, so Pe(a/L) � 1 and eqn. 12 shows that Sh � 1. The enhancement of
the transverse mass flux is due to the small value of δ at large Peclet numbers, because of the
macroscopic flow, thus maintaining large transverse gradients of concentration.

2.1.4 An analogy between mass flux and viscous drag ?

Just a side remark : yes, there is an analogy between mass flux and viscous drag. Consider the
viscous boundary layer on a flat plate : the thickness of the boundary layer scales as δν =

√
νx/U

wher U is the velocity outside the boundary layer. The shear stress on the plate is σxy = η∂ux/∂y ∼
ηU/δν(x) where η is the dynamic viscosity. The drag force on the plate of length L (per unit length

in the third dimension z) is Fd =
∫ L
0
σxydx = ηU

∫ L
0
δν(x)−1dx. Using the expression for δν , we

get :

Fd ∼ ηU
√
UL

ν
= ηURe

1/2
L (13)

Equation 13 is similar to eqn. (12) if we identify ηU as a drag force (per unit length) resulting
from a purely diffusive transport of momentum and if the Reynolds number plays a role similar to
the Peclet number. Note that the ratio L/a does not appear here because we have not considered
a characteristic length scale in the y direction.

2.2 Transport boundary layers

We can now use the ideas developed above to solve slightly more complicated problems, pro-
vided that we can make the approximation that there exits a thin boundary layer in which the
concentration or temperature changes rapidly in the direction transverse (say y) to the main flow.
If the thickness of this boundary layer increases slowly in the streamwise direction (say x), we
can ignore the diffusive flux in the x direction −D∂c/∂x compared to the diffusive flux in the y
direction −D∂c/∂y and this simplifies greatly the mathematical solution of the problem.
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2.2.1 Concentration boundary layer on a flat plate. Velocity field invariant in the
streamwise direction

We consider first the case described in the ”micro biochemical sensor” problem (fig. 5). Liquid
containing a tracer molecule at concentration C0 flows within a channel of height a. On the bottom
of the channel there is a reactive region which adsorbs quickly the tracer molecules. We make the
assumption that the adsorption process is very fast, so that we can consider that the concentration
is 0 on the reactive plate. We want to compute the flux of molecules towards the reacting plate.
This flux is fixed by the concentration gradient on the bottom wall of the channel, located at
y = 0 : J = −D(∂c/∂y) at y = 0.

Figure 5 – Concentration boundary layer within a channel. Reactive plate in red.

So we need to determine the concentration field, given the velocity field ux(y) and the diffusion
coefficient D. Again, we are looking for solutions at steady state and the transport equation is
again :

ux(y)
∂c

∂x
= D∆c (14)

From the previous analysis, we know that, if the Peclet number is large enough, there will be
a thin concentration boundary layer of thickness δ(x) on the bottom of the channel this time and
we make the assumption ∆c ≈ ∂2c/∂y2 and the transport equation is :

ux(y)
∂c

∂x
= D

∂2c

∂y2
. (15)

We cannot proceed exactly like in the previous problem because ux does depend on y, but
we can at least make a general dimensional analysis if we assume that ux varies as a power law
ux = U(y/a)α giving : (y

a

)α ∂c
∂x

=
D

U

∂2c

∂y2
. (16)

We can then make a very crude dimensional analysis by setting y ∼ δ and ∂c/∂x ∼ c0/x.
Then : (

δ

a

)α
C0

x
∼ D

U

C0

δ2
(17)

and we derive a scaling law for δ(x) :

δ2+α ∼ Dx

U
a−α =

D

Ua

x

a
a2−α (18)

or :

δ ∼
(x
a

) 1
2+α

Pe−
1

2+α a
2−α
2+α . (19)
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Once we know δ(x) from the scaling relation (19), we estimate the local mass flux on the wall as
−DC0/δ(x) and we integrate over the total length L of the reacting plate to get the total mass

exchange per unit time : Jtotal = −DC0

∫ L
0
δ(x)−1 dx. Again we see that δ decreases when the

Peclet number increases, but with a power law depending on the velocity profile.
There is a more rigorous way of doing this by seeking self-similar solutions of the transport

equation of the form c = C0f(y/δ(x)). It turns out that the scaling relation (19) provides the
appropriate dependence for δ and the transport equation written with the rescaled variable ζ =
y/δ(x) as we did above, becomes an O.D.E. which is easier to solve. We will derive in class the
exact solution in the case where the velocity profile is linear (ux = Uy/a).

2.2.2 Concentration or temperature boundary layer on a curved solid. The velocity
field is a viscous boundary layer.

We can generalize further by looking at situations where the surface on which the transport
layer occurs is no longer flat and where the velocity field evolves (slowly) with streamwise coordi-
nate. This type of situation is shown on fig. 6 : a heated cylinder is placed in a stream of gaz flowing
at right angle to the axis of the cylinder. If the Peclet number is large enough (here Pe ∼ 100),
a thin transport boundary layer develops from the stagnation point, on the upstream side of the
cylinder. If the radius of curvature of the surface is large compared to δ, we can essentially use
the same arguments as above, replacing x by the curvilinear coordinate s along the object surface
(fig. 7).

There is an additional complexity though : the flow field is a viscous boundary layer with
a thickness δν also developing from the stagnation point, so u depends both on the coordinate
normal to the surface and also on the streamwise position s. Nevertheless, as long as the boundary
layers remain thin (implying Pe� 1 for δ and Re� 1 for δν) we can neglect the diffusive fluxes
in the s direction and this allows the derivation of self-similar solutions as we have done before.
δ and δν will be different in general because the kinematic viscosity ν and the heat diffusivity
κ = λ/ρCP or the mass diffusivity D are not equal. In particular in liquids, D is typically much
smaller than ν. But the ratio ν/κ (called the Prandtl number) may be larger or smaller than 1
depending on the fluids (for example Pr = 0.7 for air Pr ∼ 10 for water).

This is a basis to understand the heat transfer from a body in fluid flow and to propose an
expression for the ”wind chill factor”.
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Figure 6 – Thermal boundary layer on a heated circular cylinder visualized by Mach-Zender
interferometry. Each black line corresponds to a given value of the optical path through the
interferometer and since the optical index of the fluid is directly related to the temperature, each
black line is an isotherm. Reynolds number for the flow = 120. Pe = Re(ν/κ) = RePr = 84 for
air. Picture reproduced from An Album of Fluid Motion by Milton Van Dyke.
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Figure 7 – Concentration or thermal boundary layer on a cylinder.
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