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Energy can be transported by the electromagnetic field radiated by an object at finite tempe-
rature. A very important example is the infrared radiation emitted towards space by the surface
of the earth. The partial absorption of this radiation by various gases in the atmosphere (water
vapor, carbon dioxide, methane, ...) is the origin of the greenhouse effect (fig. 1) which determines
the average temperature of the atmosphere.

1 Radiation from black, grey and real bodies

1.1 Black body radiation

1.1.1 Photons inside a cavity

To characterize the radiation emitted by a body of matter at finite temperature, it is first
useful to define the emission characteristics of an idealized black body. A black body is a system
which absorbs completely any incoming radiation and is in equilibrium with a reservoir at constant
temperature T . The system which would represent closely a black body is a cavity with a very
small opening. Radiation entering the cavity through the small aperture would be trapped inside
by multiple reflections. Using the laws of statistical physics, it is possible to derive the distribution
of states of an assembly of photons within a closed cavity in thermal equilibrium. The number of
photons in state s having an energy εs is the Planck distribution 1 :

ns =
1

eβεs − 1

where β = 1/kBT . Each photon is characterized by its wavector k and its state of polarization
(there are two states of polarization possible) ; its energy ε is given as a function of wavevector
k = |k| or angular frequency ω by ε = h̄ck = h̄ω. If we let f(k)d3k be the number of photons per
unit volume, with one specified direction of polarization, having a wavector between k and k+dk.
The number of such photon states per unit volume is (2π)−3d3k. Taking into account Planck’s
distribution, we have :

f(k)d3k =
1

eβh̄ω − 1

d3k

(2π)3

Now, we compute the number of photons per unit volume with both directions of polarizations,
with angular frequency in the range ω - ω + dω, n(ω)dω. This is given by summing f(k)d3k over
the domain of Fourier space contained between radii k = ω/c and k+dk = (ω+dω)/c, i.e. 4πk2dk,
and multiplying by two to account for both polarizations :

n(ω)dω = 2f(k)4πk2dk =
8π

(2πc)3

ω2dω

eβh̄ω − 1

Finally, since each photon has an energy h̄ω, the mean energy per unit volume of the photon
assembly in the range ω - ω + dω is :

1. For the derivation of this result, see a statistical physics textbook
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Figure 1 – Heat fluxes through the earth atmosphere. Figure from the 4th report of the IPCC
(2007)

ū(ω, T )dω =
h̄

π2c3
ω3dω

eβh̄ω − 1
. (1)

To insure thermal equilibrium within the cavity, the associated radiation field has the following
properties : it is homogeneous (independent of position), isotropic (independent of the direction of
propagation), unpolarized (all polarizations are equally probable) and independent of the shape
of the cavity.

1.1.2 Emission and absorption of radiation

The electromagnetic emission of a body can be characterized by the quantity Pe(k, α)dωdΩ
which is the power emitted per unit area, with polarization α, in the frequency range ω - ω + dω,
within a small solid angle dΩ around the direction given by the wavevector k. This body can also
receive radiation from a direction k′ defined as an incident power Pi(k

′, α)dωdΩ. The body will
in general adsorb a fraction a(k′, α) of this incident power. a(k′, α) is called the absorptivity of
the body. In equilibrium, conservation of energy requires that the fraction of radiation which is
not adsorbed should be reflected. The consequence of this equilibrium is the following relation
between the emitted and incident powers :

Pe(−k, α) = a(k, α)Pi(k, α) (2)

A black body is a perfect absorber, regardless of wavelength and polarization, i.e. a(k, α) ≡ 1 and
we have Pe(−k, α) = Pi(k, α). We can compute Pi for a black body, using the mean number of
photons f(k)d3k determined above and noting that, if the angle of incidence with respect to the
normal is θ, the number of photons crossing the surface per unit time is : c cos θ f(k)d3k. Each
photon carrying an energy h̄ω, we have :

Pi(k, α)dωdΩ = h̄ω c cos θ f(k)d3k.

In spherical coordinates, we have d3k = k2dkdΩ = (ω2/c3)dωdΩ and :

Pi(k, α) =
h̄ω3

c2
f(k) cos θ (3)

From eqn. 2 and eqn. 3, we can see that the emitted power Pe(k, α) = Pi(k, α) varies with the
cosine of the angle with respect to the normal. This result, known as Lambert’s law, is simply
a geometrical consequence of the projection of a unit area of the body onto the direction of
propagation.
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Figure 2 – Radiation within a solid angle dΩ = sin θ dθ dφ in a direction making an angle θ with
the normal n.

To get the total power emitted in all directions of space Pe(ω)dω, we need to integrate
Pe(k, α)dωdΩ over all solid angles defined by the polar angle 0 < θ < π/2 and the azimuthal
angle 0 < φ < 2π and multiply by 2 to account for the two possible polarizations :

Pe(ω)dω =
2h̄ω3

c2
f(k)dω

∫ 2π

0

dφ

∫ π/2

0

cos θ sin θdθ =
2πh̄ω3

c2
f(k)dω (4)

Using the value found above for f(k), we have the power emitted per unit area by a black body
at temperature T in the angular frequency range ω - ω + dω :

Pe(ω, T )dω =
h̄

4π2c2
ω3dω

eβh̄ω − 1
(5)

If we need this spectral distribution in terms of the wavelength λ, we use ω = 2πc/λ and |dω| =
2πc/λ2 dλ to get

Pe(λ, T )dλ =
2πhc2

λ5

dλ

exp(hc/λkBT )− 1
. (6)

This spectral distribution is shown on fig. 3 for four different values of the temperature T . This
distribution has a maximum at a wavelength inversely proportional to temperature :

λM =
2, 88× 10−3

T
. (7)

This proportionality to the inverse of the absolute temperature is called Wien’s displacement law.
It comes from the fact that the average energy of the radiated photons is equal to the thermal
energy :

kBT ∝
hc

λM
.

At T = 300K, the emission is in the infrared range, with λM = 9.6µm and at T = 5800K,
the surface temperature of the sun the maximum of emission is in the visible range at λM =
0.5µm. There is a diffuse electromagnetic radiation in the universe with a wavelength in the mm
range, equivalent to a temperature of 3K and which is interpreted as a remnant of the primordial
explosion.

When we integrate the spectral distribution over the whole wavelength range, we get the total
power emitted by unit surface :

PBB(T ) =

∫ ∞
0

Pe(λ, T )dλ =
2π5k4

B

15 h3c2
T 4 = σT 4. (8)

This is Stefan-Boltzmann’s law, the value of the constant σ is 5, 67 × 10−8 W.m−2.K−4. For
example, we can compute from the Stefan-Boltzmann’s law that a black body at 300 K emits
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460 W.m−2. The dependance of the emitted power with the fourth power of temperature can be
understood by a scaling argument : each photon has an energy which is on average proportional
to kBT and the average wavelength is inversely proportional to T . Consequently the average wave
vector k of these photons is proportional to T . The number of possible states nS is proportional
to the volume of the sphere of radius k in the Fourier space, that is nS ∝ k3 ∝ T 3. As a result,
the total average energy of the assembly of photons is proportional to nSkBT ∝ T 4.
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Figure 3 – Spectral distribution of the black body radiation at four different temperatures.

1.2 Real bodies. Grey bodies.

1.2.1 Emissivity and Kirchoff’s law

Materials in general have an absorptivity a and emissivity e(λ, T, θ) smaller than one and
depending on the wavelength, the temperature and the angle of incidence. The emissivity e is
defined as the ratio between the power emitted P and the power that would be emitted by a
black body at the same temperature, wavelength and orientation, i.e. P = e(λ, T, θ)PBB(T, λ, θ).
There is a general relation between absorptivity and emissivity which can be derived by the
following thought experiment : imagine that we place a black body (a body absorbing all radiation)
inside a cavity at temperature T . The radiation inside the cavity Pcav is determined by Planck’s
distribution. If the black body is also at T , there should not be a net exchange of energy between
the cavity and the blackbody. The power emitted by the blackbody should be equal to the incident
radiation : PBB = Pcav. Now we place in the cavity a body which is not black and characterized
by its absorptivity a. The power absorbed is aPcav and for the body to be in equilibrium it should
be equal to the emitted power P . So we get : P = aPcav = aPBB . From the definition of emissivity
P = ePBB , we get Kirchoff’s law :

a = e (9)

the emissivity of a body is equal to its absorptivity.

1.2.2 Grey bodies

For some materials in a range of wavelengths, the emissivity e is constant and the power emitted
has a spectral distribution which is identical to a black body. Those materials are referred to as
grey bodies. Their total emissive power is simply given by :

PGB(T ) = ePBB(T ) = eσT 4 (10)
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For example, polished metals have an emissivity which depends weakly on wavelength in the
infrared range (fig. 4). For copper surfaces, either polished or covered with an oxide layer, the
hemispherical emissivity (i.e. the emissivity integrated over all possible directions and wavelengths)
depends weakly on temperature in the range 200-1000 K.

Polished metal surfaces are highly reflective and their absorptivity a is very small. As a conse-
quence of Kirchoff’s law, their emissivity e = a is also very small. Polished copper is a very good
reflector of radiation and a very poor emitter of radiation. Thin metal layers deposited on the
glass surface of Dewar flasks prevent the exchange of heat by radiation. Likewise, blankets made
of a thin polymer sheet bonded to a reflective metal layer prevent the radiative loss of heat from
an injured person.

When a metal surface is covered by an oxide layer, the emissivity increases strongly (fig. 4)

Figure 4 – Left : emissivity as a function of wavelength for three metal surfaces : polished
aluminum and copper, anodized aluminum. Right : hemispherical emissivity (emissivity integrated
over wavelengths and directions) for copper with and whitout oxide layers. Figures reproduced from
Kreith et al., Principles of heat transfer.

1.2.3 Infrared thermography

The power emitted by a body varies with the fourth power of the absolute temperature accor-
ding to Stefan’s law. As a result, even over a limited range of temperatures, say from 10◦C to 110◦C
(283 K to 383 K) the power emitted increases by a factor of three (fig.5) . From a measurement of
the intensity radiated and a knowledge of the emissivity of the surface, it is possible to determine
the temperature of a surface. This is the principle of infrared thermography. Infrared cameras
operating at wavelengths between 7 and 14 µm are typically able to ”image” temperatures in the
range -40◦C - 2000◦C with a precision in the measurement of ± 1◦C in the range 5◦C-150◦C.
Passive thermography is used routinely to evaluate the thermal insulation properties of buildings
or to detect problems in electrical circuits leading to enhanced heat dissipation. There is another
mode of operation : active of flash thermography, in which a heat pulse is locally applied to a ma-
terial by a focalized strong source of light. The camera records the evolution of the temperature
field after the application of the pulse. If there is a defect inside the material, the diffusion of heat
will be altered and the temperature field will be different from what we expect from diffusion in
a homogeneous material.
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Figure 5 – Left : power emitted by a black body as a function of temperature. Right : thermal
imaging of emperor penguins. Image reproduced from McCafferty et al., Biol. Lett. 2013

2 Radiative exchange between two bodies. Shape factors.

To compute the radiative transfer of energy between two bodies, it is necessary to take into
account the angular distribution of radiation with respect to the surface normal. Even if the
emissivity is isotropic, the intensity of radiation depends on the orientation with regards to normal
to the surface. The emission in a direction making an angle θ with the normal must be multiplied
by a factor cos θ corresponding to the projection onto the normal. Likewise, for the radiation
arriving on a surface, one has to take into account the inclination with respect to the normal.
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Figure 6 – Determination of the shape factor for the radiative transfer between two bodies.

For each particular geometry, it is necessary to compute a shape factor (or view factor)F1−2

giving the fraction of energy radiated by body 1 which reaches body 2. Let us consider two black
bodies with surfaces A1 et A2 (fig. 6). The energy flux from 1 to 2 is : q1→2 = Pb1A1F1−2.
Conversely, the flux exchanged between 2 and 1 is : q2→1 = Pb2A2F2−1. If the two bodies are
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blackbodies, the energy received is entirely adsorbed and the net balance of exchanged energy is :
∆q1−2 = Pb1A1F1−2 − Pb2A2F2−1. If the two bodies are at the same temperature, the net energy
balance is zero and the power densities radiated by each body are the same : (Pb1 = Pb2). We then
get the reciprocity relation for the shape factors :

A1F1−2 = A2F2−1 (11)

and the energy flux exchanged between two black bodies at different temperatures can be written :
∆q1−2 = A1F1−2(Pb1 − Pb2) = A2F2−1(Pb1 − Pb2).

The energy radiated by an elementary surface dA1 reaching the elementary surface dA2 is :

dq1→2 = I1 cos θ1dA1dΩ1−2 (12)

where I1 is the radiation intensity I1 = Pb1/π
2 and where dΩ1−2 is the solid angle defined by dA2

seen from dA1. This solid angle is given by : dΩ1−2 = cos θ2dA2/r
2. Then :

dq1→2 = Pb1
cos θ1 cos θ2dA1dA2

πr2
(13)

with a symmetrical expression for the flux exchanged between 2 and 1. The net flux exchanged
between the two elementary surfaces is :

dq1−2 = (Pb1 − Pb2)
cos θ1 cos θ2dA1dA2

πr2
. (14)

To compute the total flux exchanged between bodies 1 and 2, we integrate the elementary
fluxes over the entire surfaces A1 and A2 :

q1−2 = (Pb1 − Pb2)

∫
A1

∫
A2

cos θ1 cos θ2dA1dA2

πr2
. (15)

The calculations of shape factors are in general rather complicated but can be done analytically
for a few standardized geometries, for example two rectangles facing each other or at right angle,
two disks facing each other.

When the bodies involved in the radiation exchange are not black, it is of course necessary to
account for their emissivity.

2.1 Energy exchange between two disks facing each other

A simple example of shape factor calculation is the case of a small disk or area A1 and a large
disk of area A2 = πa2, facing each other and separated by a distance D (fig. 7).

The shape factor F1−2 is such that :

A1F1−2 =

∫
A1

∫
A2

cos θ1 cos θ2 dA1 dA2

πr2
. (16)

Area A1 being very small compared to A2, the angles θ1 and θ2 vary only very little when we move
the point of interest over the surface A1 and, instead of integrating over A1, we can just multiply
by A1 :

A1F1−2 =
A1

π

∫
A2

cos θ1 cos θ2 dA2

r2
. (17)

Using the following relations : cos θ1 = cos θ2 = D/r, r =
√
D2 + ρ2 et dA2 = 2πρ dρ, we get :

A1F1−2 = 2A1

∫ a

0

D2ρ dρ

(D2 + ρ2)2
. (18)

and after integration :

F1−2 =
a2

a2 +D2
(19)

2. The π factor comes from the integration over all possible angles on an hemisphere.
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Figure 7 – Radiative transfer between coaxial disks.

3 Summary

— bodies at a finite temperature T radiate electromagnetic waves with an intensity depending
on temperature, wavelength and direction with respect to the normal I(T, λ, θ) defined by
the emissivity e(T, λ, θ) such as I(T, λ, θ) = e(T, λ, θ)IBB(T, λ, θ) where IBB(T, λ, θ) is the
intensity radiated by an ideal black body and defined as :

IBB =
2hc2

λ5

cos θ

exp(hc/λkBT )− 1

— the emissivity e is equal to the absorptivity a (Kirchoff’s law)
— the radiated intensity is maximum at a wavelength λM inversely proportional to T (Wien’s

law)
— the total power radiated by a black body is proportional to T 4 (Stefan’s law)
— to compute the net exchange of energy by radiation between two bodies 1 and 2 of area A1

and A2, we need to evaluate shape factors F1−2 or F2−1 possessing the reciprocity relation :
A1F1−2 = A2F2−1.
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