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The transport equations for mass and heat are obtained from conservation laws of mass, on
one hand, and energy, on the other hand. We consider a volume V fixed in space and bounded by
a surface ∂V = S and we write the balance between the change of mass or energy within V and
the net fluxes of mass or energy crossing the bounding surface S.

Different types of fluxes need to be considered : diffusive fluxes resulting from thermally acti-
vated motion at the molecular scale, convective fluxes resulting from the macroscopic motion of a
fluid, and for heat transport, radiative fluxes due to electromagnetic radiation.

The variation of mass of a given chemical species within the volume V can also be due to a
chemical reaction. Likewise, heat can be produced by different mechanisms : chemical reactions,
nuclear reactions, viscous dissipation, electrical resistance. These phenomena have to be included
in the overall balance.

Figure 1 – Heat transfer in mammals. Left : heat is generated within the body of the mouse
by its metabolism. This heat is exchanged with the surrounding air, first by transport within the
body by diffusion and convection by the blood flow, then by transport through the air by diffusion,
convection and radiation. The map of temperature on the body surface is obtained by analysis of
the infrared radiation. Image reproduced from A. Warner et al., PNAS, 110,16241 (2013). Right :
model for thermoregulation of the human body taking into account exchanges within different
layers of the limbs and transport of heat in the surrounding air. Image reproduced from D. Fiala
et al., J. Appl. Physiol. 87, 1957 (1999).

1 Transport of energy and heat

As said above, we consider a control volume V fixed in space and we examine the rate of change
of total energy E (internal U + kinetic K + potential Φ) inside this volume. The change of energy
per unit time results from the following mechanisms :

— production of heat within V by reactions, nuclear or chemical, by phase changes or dissi-
pative processes such as the Joule effect

— net flux of kinetic energy through the bounding surface S due to the macroscopic flow
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— net flux of heat through the bounding surface S due to the macroscopic flow
— net flux of heat through the bounding surface S due to molecular diffusion
— rate of work done by volume forces (e.g. gravity) on the material contained within V
— rate of work done by stresses (surface forces)
If the potential does not change with time and depends only on the spatial coordinates, since

the volume V is fixed in space, there is no variation of potential energy.
When the fixed control volume contains only a solid material there is no macroscopic motion

and we do not have to take into account the kinetic energy. For a fluid material however, it is
possible to write an equation of change for the macroscopic kinetic energy K alone using Newtons’
laws of motion. For an incompressible newtonian fluid,the Navier-Stokes equation leads to the
following equation for dK/dt, using the decomposition of the stress tensor into a pressure term
−pI and a viscous term d = η(∇u +∇uT ) where η is the dynamic viscosity 1 :

dK

dt
= −∇.

[
u

(
ρu2

2
+ p

)
− u.d

]
+ u.f − d.∇u (1)

The divergence term on the right hand side of the equation involves the transport of kinetic
energy by the flow, the work done per unit time on the system by the pressure and the viscous
stresses. The following term is the work done per unit time by volume forces f such as gravity.
The last term involving the velocity gradient, i.e. the rate of deformation of material elements, is
the energy dissipated per unit time by viscosity. This dissipated energy is converted into heat. For
example, in a car tire made of a viscoelastic material, essentially vulcanized rubber loaded with
small mineral particles, viscous dissipation contributes significantly to the rolling resistance and
leads to an increase of the tire temperature.

If we set aside the evolution of kinetic energy, we get the following equation for the rate of
change of internal energy U per unit volume, for an incompressible material :

dU

dt
= R−∇.(JC + JD + JR) + d.∇u (2)

where R is the amount of heat produced per unit time by reactions, JC , JD, and JR are the
fluxes of heat due to convection by the flow, diffusion and radiation respectively and the last term
corresponds to heat generated by viscous dissipation.

1.1 Transport by diffusion

The diffusive flux of heat is given by Fourier’s law :

JD = −λ∇T (3)

where λ is the thermal conductivity of the material. λ is defined as a positive quantity and the
minus sign is introduced in Fourier’s law to satisfy the second principle of thermodynamics : heat
flows down the temperature gradient, from the region of higher temperature towards the region
of lower temperature. The heat flux varies linearly with the temperature gradient, because we are
considering situations which are close to equilibrium and the microstructure of the material is not
modified by the existence of the heat flux. In SI units, λ is expressed in W.m−2.K−1.

1.2 Transport by convection

If the material is a fluid and if there is a macroscopic flow defined by a velocity field u, the
convective heat flux due this flow is :

JC = ρCTu (4)

1. See Guyon, Hulin, Petit, Hydrodynamique Physique, § 5.3, or Batchelor, An introduction to Fluid Dynamics,
§ 3.4
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where ρ is the density of the fluid and C is the specific heat per unit mass. ρu is the mass of
fluid crossing a unit surface per unit time and each unit mass of fluid at temperature T carries an
amount of heat equal to CT .

1.3 The equation for heat transport

Using the equation of change for U (eqn. 2) and setting aside the radiative flux and heat
generation by viscous dissipation, we get :∫

V

∂U

∂t
dV =

∫
V

R dV +

∫
S

λ∇T.n dS −
∫
S

ρCTu.n dS (5)

where n is the unit normal on S directed outwards.
For a system at constant volume, the change in internal energy is related to the change in

temperature dU = ρCdT and the energy balance becomes :∫
V

∂T

∂t
dV =

∫
V

R

ρC
dV +

λ

ρC

∫
S

∇T.n dS −
∫
S

Tu.n dS (6)

Using the divergence theorem we get :∫
V

[
dT

dt
− λ

ρC
∆T +∇.(Tu)− R

ρC

]
dV = 0 (7)

The control volume V is chosen in an arbitrary manner and, if the fluid is incompressible (∇.u = 0),
we get finally :

∂T

∂t
+ u.∇T = κ∆T +

R

ρC
(8)

where κ = λ/ρC is the thermal diffusivity, the diffusion coefficient of heat. In SI units, κ is
expressed in m2.s−1.

To compare the relative importance of convective and diffusive transport, we define a dimen-
sionless number, the Peclet number :

Pe =
UL

κ

where U is an order of magnitude of the velocity and L is a length scale characteristic of the
temperature gradient. The Peclet number is the analogous of the Reynolds number for momentum
transport.

When the Peclet number is much smaller than one, transport par convection can be ignored
and the equation for heat transport reduces to a simple diffusion equation ∂tT = κ∆T .

In steady state situations and without convection by a flow, we have only to solve Laplace’s
equation ∆T = 0 with the appropriate boundary conditions (fixed temperature or fixed flux, i.e.
fixed temperature gradient).

2 Mass transport

Similarly to heat transport, we can derive the equation for mass transport from a mass balance
on a fixed control volume V . More specifically, we consider the variation in time of a given chemical
species i within V : the rate of change of mass is equal to the net flux through S = ∂V of species
i with an additional source term if there is a chemical reaction producing i within V . The mass
balance for i reads : ∫

V

∂ρi
∂t

dV = −
∫
S

ni.nS dS +

∫
V

ri dV (9)

where ρi is the mass of i per unit volume, ni is the mass flux of i, nS is the unit vector normal to
surface S and ri is the mass of i produced by unit volume and by unit time.
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Figure 2 – An example of mass transfer in a biochemical sensor. A solution containing a biomole-
cule to be analyzed flows and diffuses within a channel. A strip on the channel floor is grafted with
receptors on which the biomolecule binds and unbinds with rate constant kon and koff . Image
reproduced from Squires et al., Nature Biotech. 26, 417 (2008).

This mass balance equation can be written with other variables than the concentration in
mass, namely : the molar concentration ci = ρi/Mi, the mass fraction ωi = ρi/ρ or the molar
fraction xi = ci/c where Mi is the molar mass of i, ρ is the total mass per unit volume and c
is the total molar concentration. Molar fractions are in particular useful to take into account the
stoechiometric conditions in chemical reactions.

To write the convective and diffusive mass fluxes, it is important to define speeds of motion
for each species and average speeds for the solution as a whole. Let us note vi the global speed of
species i,i.e. the speeds of molecules of i averaged over a length scale much lager than intermolecular
distances. The mass flux of i in a fixed reference frame is ni = ρivi and the molar flux of i in the
same reference frame is Ni = civi.

Now we define average speeds for the solution as a whole, a mass averaged speed :

v =

∑
i ρivi∑
i ρi

and equivalently an molar averaged speed :

v∗ =

∑
i civi∑
i ci

So, we get, using the mass and molar fluxes :

ρv =
∑
i

ni and cv∗ =
∑
i

Ni.

Finally, we define fluxes relative to the mean speed of the solution, namely the relative mass
flux :

ji = ρi(vi − v)

and the relative molar flux :

Ji∗ = ci(vi − v∗).
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2.1 Transport by diffusion

Fick’s law which is analogous to Fourier’s law, gives an expression for these fluxes when we
take into account the molecular diffusion processes :

ji = −Di∇ρi = −Diρ∇ωi and Ji∗ = −Di∇ci = −Dic∇xi (10)

where Di is the diffusion coefficient of species i within the solution. The linear relation between
fluxes and concentration gradients comes from the fact that we consider small excursions from the
thermodynamic equilibrium. The minus sign is consistent with the second law of thermodynamics,
concentration gradients relax spontaneously towards an equilibrium situation without gradients.

2.2 Transport by convection

To get the total flux of species i, we have also to take into account the convective flux due to
the macroscopic flow of the solution. The mass flux due to the average flow is ρiv and the molar
flux is civ∗. When we add the contributions due to molecular diffusion and macroscopic flow, we
get the total mass and molar fluxes ni and Ni :

ni = ρiv −Di∇ρi and Ni = civ∗ −Di∇ci (11)

For the particular case of a binary solution A,B, the average speeds are such that : ρv = nA+nB

and cv∗ = NA + NB and the mass and molar fluxes of A are :

nA = ωA(nA + nB)− ρDA∇ωA and NA = xA(NA + NB)− cDA∇xA (12)

with similar expressions for the mass and molar fluxes of B.

2.3 The equation for mass transport

Using the expression for mass and molar fluxes in the mass balance (eqn. 9) together with the
divergence theorem we get the transport equation for species i :

∂ρi
∂t

= −∇.(ρiv) +∇.(Di∇ρi) + ri (13)

and ; similarly for the molar concentration :

∂ci
∂t

= −∇.(civ∗) +∇.(Di∇ci) +Ri (14)

where Ri = ri/Mi is the number of moles of i produced per unit time and per unit volume.
These equations can be simplified if the fluid is incompressible, i.e. if ρ =

∑
i ρi is constant

and if the diffusion coefficient Di is constant. This last hypothesis is valid in particular for dilute
solutions. We get then :

∂ρi
∂t

+ v.∇ρi = Di∆ρi + ri (15)

and, for the molar concentration :

∂ci
∂t

+ v∗.∇ci = Di∆ci +Ri (16)

These transport equations are exactly similar to the equation for heat transport. A Peclet
number Pe = UL/Di can be defined to compare the transport by convection and the transport
by diffusion. As before U is a characteristic speed of the flow and L is a characteristic length scale
of the concentration gradient.
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3 Vorticity, heat and mass transport : similar equations

The transport equations for mass (15) and heat (8) have exactly the same structure, if we
ignore radiative transport for heat. These are convection-diffusion equations.

The Navier-Stokes equation for newtonian fluids can be written in terms of the vorticity ω =
∇∧ u :

∂ω

∂t
+ u.∇ω − ν∆ω + ω.∇u = 0.

This equation has an advection term u.∇ω and a diffusion term involving the kinematic visco-
sity of the fluid ν∆ω, but there is an additional term related to the vectorial nature of the vorticity.
However, in two dimensions, ω and ∇u are orthogonal and the equation for vorticity becomes :

∂ω

∂t
+ u.∇ω = ν∆ω

The structure of the equation is exactly similar to the ones derived for heat and mass. It will then
be interesting to transpose results obtain for one problem, say transport of momentum, to another
one.

In particular, the concept of boundary layer for momentum transport, at large Reynolds num-
ber, can be readily extended to the transport of heat and mass when the Peclet number is much
larger than unity. In fluid mechanics, we know that we cannot ignore completely viscosity at large
Reynolds numbers, otherwise we get non physical values for drag forces (the paradox of Dalem-
bert). Similarly, for transport phenomena, at large Peclet numbers, we will see that we cannot
ignore completely the diffusive term, otherwise we would not be able to compute the flux of heat
or mass towards a solid surface for example.

Figure 3 – A car combustion engine with a main radiator to regulate the temperature of the cold
source of the thermal engine and a secondary radiator to heat the interior of the car.

4 Local equations vs global balances

In the preceding sections, starting from conservation laws for energy and mass, we have es-
tablished convection-diffusion differential equations. Solving these equations with the appropriate
boundary conditions, we can obtain analytical or numerical descriptions of the temperature and
concentration fields. For example, in the biochemical sensor case described on fig. 2, the authors
of the research article solved numerically the transport equation 15 and also found asymptotic
analytical solutions for the concentration field.

But it is always possible to write also global balances. For the example of the biochemical
sensor, the global balance of the biomolecule to be analyzed is simply : mass flow rate at the
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entrance of the channel = mass flow rate at the exit of the channel + rate of adsorption on the
strip grafted with receptors.

Another simple global balance, for heat transfer this time, can be written for a car radiator
(fig. 3) : the total heat flux entering the radiator Jin is the mass flow rate of water ρQ (Q is the
volumetric flow rate) multiplied by the inlet temperature Tin and the specific heat of water per
unit mass C : Jin = QρCTin. It should be equal to the sum of the heat flux leaving the radiator due
to the water flow : Jout = QρCTout and the heat flux to the surrounding air due to the conduction
through the metal fins and the boundary layer in air Jcond, that is : QC(Tin−Tout) = Jcond. This
equation is obviously not sufficient to design the radiator, we need to model the heat diffusion
through the fins, but if we measure the temperature at the inlet and outlet and the flow rate we
know the value of Jcond.

5 Summary

Heat and mass transport are described by convection-diffusion equations having the following
general form :

 rate of change
of heat
or mass

 =

 net diffusive flux
of heat
or mass

+

 net convective flux
of heat
or mass



+


rate of production

of heat
or mass

by reactions

+

(
net radiative flux

of heat

)
(17)

More precisely, if H is the scalar quantity transported in a velocity field v, with a diffusion
coefficient DH and a production term RH :

∂H

∂t
+ v.∇H = DH∆H +RH (18)

The ratio of the convective flux to the diffusive flux is given by a dimensionless group, the
Peclet number

Pe =
UL

DH
. (19)

When the Peclet number is much smaller than unity, the convective flux can be ignored and the
transport occurs only through diffusion. Unfortunately, at large Peclet numbers, the diffusive flux
cannot always be ignored.

For steady state situations (∂t = 0) and if convection is not present or negligible the transport
equation reduces to Laplace’s equation ∆H = 0 or Poisson’s equation ∆H = RH if there is a
source term.
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