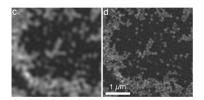
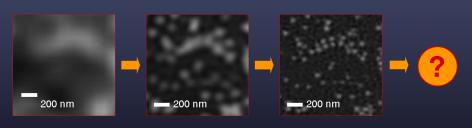

Eclairage par illumination structurée


Super-resolution imaging (by spatial patterning of excitation)

Saturated structured illumination microscopy (SSIM)

Gustafsson, J. Micro. 198, 82 (2000)



Super-Resolution Fluorescence Imaging by Structured Illumination

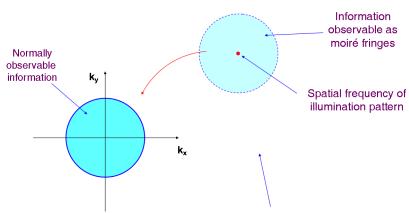
Mats G.L. Gustafsson Dept. of Physiology and Program in Bioengineering University of California, San Francisco

(→ HHMI Janelia Farm Research Campus, from next week)

- Outline:
- 2D
- 3D
- Live
- Nonlinear

Structured illumination microscopy The idea: Moiré fringes

Unknown pattern


Superposed known pattern

Moiré fringes may be resolvable even if unknown pattern is not

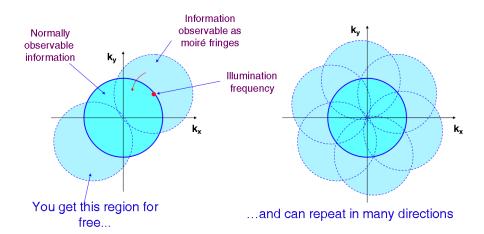
L'éclairage par illumination structurée : aliasing fréquenciel

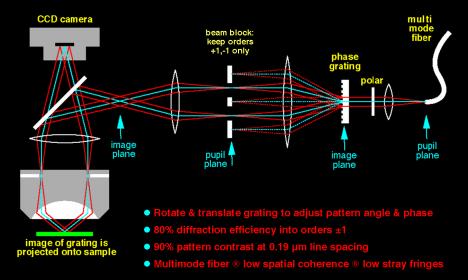
- ▶ Un microscope agit comme un filtre passe-bas, en passant dans l'espace des fréquences spatiales, ce filtre limite les vecteurs d'ondes observables à un disque centré sur l'origine. Le vecteur d'onde maximum correspond à $k_m = \frac{2\pi}{l}$ ou l est comparable à la longueur d'onde de la lumière.
- Les détails supplémentaires de l'image sont contenus dans les composantes de vecteurs d'ondes plus grand que k_m .
- Si nous éclairons avec une source de lumière modulée avec un vecteur d'onde k_e , il va se produire un battement (moiré) entre les fréquences spatiales de l'image voisines de k_i conduisant à des composantes $k_e + k_i$ qui sont filtrés par l'objectif et $k_e k_i$ qui peuvent être transmises si la norme de $k_e k_i$ est inférieure à k_m .
- ▶ En pratique comme l'éclairage se fait par l'objectif, k_e doit être inférieur à k_m en pratique k_e est juste inférieur à k_m .

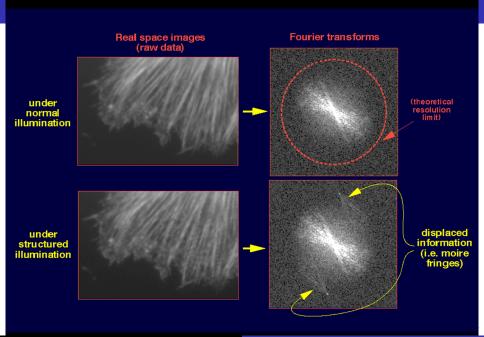
Resolution extension by spatial frequency mixing

Unfortunately, that particular frequency is impossible to make with light

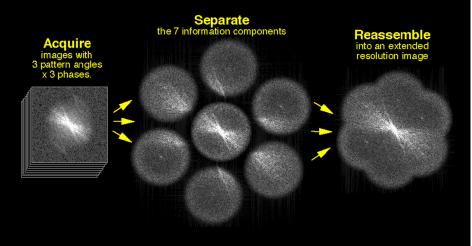
Aliasing fréquentiel et phase de modulation


- ▶ Un éclairage modulé prend la forme : $I = I_0(1 + e^{(k_e \cdot x + \phi)})$. Il contient une composante continue plus deux composantes en k_e et $-k_e$.
- L'image contient une composante en $a_i e^{(k_i.x+\theta)}$. Le produit donne $(A_{k_i}.l_0/2)e^{((k_e-k_i)x+\phi-\theta)}$ en ne gardant que la composante basse fréquence $(K=k_e-k_i)$.
- La composante continue fait apparaître les composantes basses fréquences de l'image $A_0(K)$.
- ► En éclairage structurée on a : $2.A_{k_e}(K) = A_0(K) + A_0(K + k_e).e^{(\phi \theta)}$
- ▶ On effectue trois expositions : une sans modulation : $A_0(K)$ puis deux autres avec modulation mais avec deux phases différentes ϕ_i on obtient $A_0(K + k_e).e^{\theta}$.
- ► Ce raisonnement est valable dans une direction. Il faut répéter l'opération dans trois directions à 120 degrés pour couvrir l'espace de Fourier correctement soit 7 expositions au total.

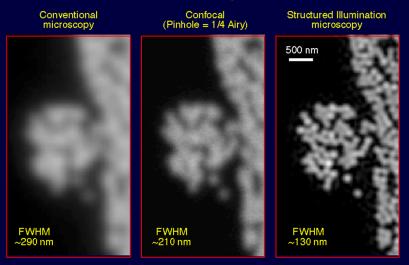

Q: Which pattern frequencies are possible?


A: Only ~the observable ones

® We get at most a factor of two

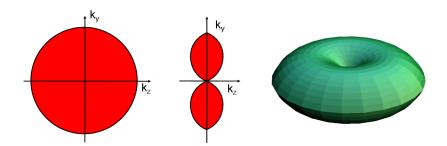


Structured illumination apparatus



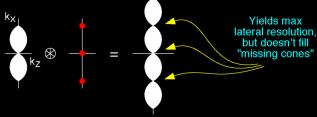
Reconstruction in reciprocal space

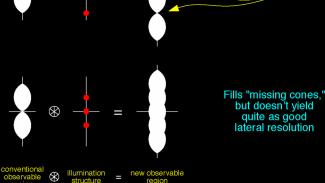
120 nm microspheres



Amélioration en 3D

- ▶ En fait la fonction de transfert d'un objectif de microscope en 3D est mauvaise dans la direction Z. Si le filtrage correspond en X,Y à un disque, en Z la résolution est très mauvaise si k_x et k_y sont petit. Elle est meilleure si k_x et k_y sont important.
- En 3D le volume de filtrage ressemble à un donut.
- L'illumination structurée permet d'améliorer considérablement ce problème.
- ▶ En décalant le volume de filtrage par des modulations en $kx_m/2$ et $kz_m/2$ et en kx_m et kz_m on peut combler les trous.
- ▶ Il faut faire typiquement 35 expositions pour améliorer la résolution en 3D.

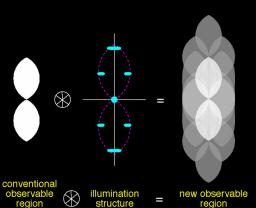

3D observable region of the conventional microscope

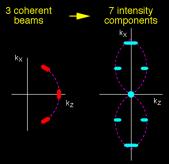

What about 3D?

Apparent problem:

Do we want maximum lateral resolution...

... or the best axial behaivor?

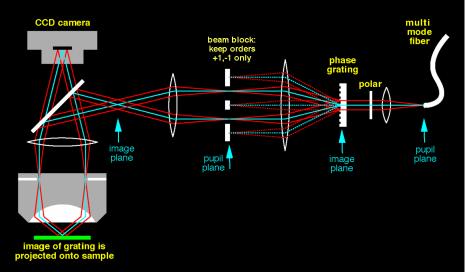



conventional region

structure

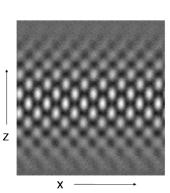
3D structured illumination with 3 beams

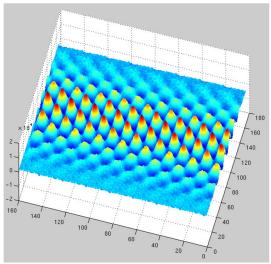
(admitting diffraction orders -1, 0, and +1)



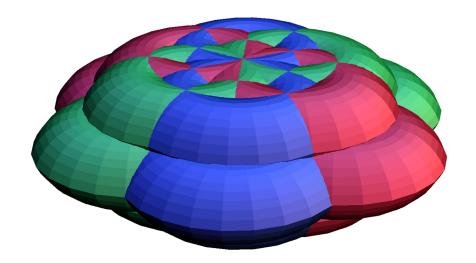

Covers full "confocal" OTF support without discarding light

Same procedure as for 2D, except requires 5 phases

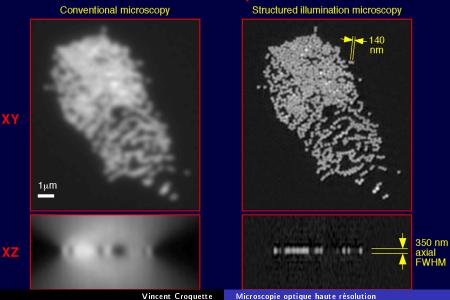

Structured illumination apparatus



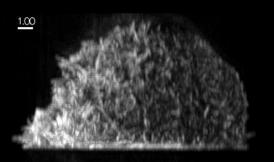
3D structured illumination apparatus



illumination intensity in real space

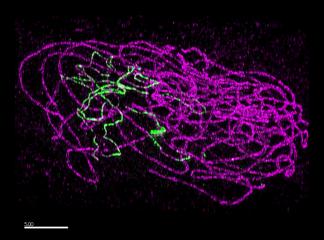


Observable Region Structured Illumination (3 orientations)


3D structured illumination

Actin in a human neutrophil

1 µm



Microtubules in a HeLa cell

Multi-color 3D SI

AFD1 (synapsed axial elements)
ASY1 (un-synapsed axial elements)

 $5 \, \mu m$

Sample by Zac Cande & Rachel Wang, UC Berkeley

Data by Pete Carlton & John Sedat, UCSF