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Signal decomposition on a base of orthogonal polynomials.

Figure : Experimental signal (in blue) over 15 points, that we wish to
adjust with a smooth curve. In green, an adjustment with a third order
polynomial obtained by projecting the signal on an orthogonal base.
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Construction of an orthogonal polynomial base.

Figure : Build-up of a base of orthogonal polynomials over 15 points. On
the left, the first one P0 corresponds to a constant value, the second P1
is a line which mean value is null. The third P2 is a parabola which is by
definition orthogonal to P1 and which mean value was set to zero so that
it is orthogonal to P0. On the right, we have iterated the process to
define P3, P4 and P5

Vincent Croquette Fourier transform



Discrete Fourier Transform

Signal in real space, Sr ∈ C avec r ∈ [0,N[ The Fourier
components write :

ak =
1
N

N−1∑
r=0

Sr .exp(−2.iπ.k .r/N) (1)

with k ∈ [−N/2,N/2[ and N points ∈ C of signals (that is 2N
variables)→ N Fourier modes ∈ C thus 2N variables). One can
define the inverse FT :

Ss =

k<N/2∑
k=−N/2

ak .exp(2iπ.k .s/N)

noindent All the Fourier components content the same information
that the signal in the direct space. The energy is, of course,
conserved this is the Parceval theorem.
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The Fourier modes are orthogonal

1
N

N−1∑
l=0

exp(−2iπ.p.r/N).exp(−2.iπ.q.r/N) = δ(p − q)

. It is interesting to expand ak in the expression of Ss :

Ss =

k<N/2∑
k=−N/2

1
N

N−1∑
r=0

Sr .exp(−2.iπ.k .r/N).exp(2.iπ.k .s/N)

One can put together and inverse the summation order :

Ss =
1
N

N−1∑
r=0

Sr

k<N/2∑
k=−N/2

exp(−2.iπ.k .(r − s)/N)

The sum on k the right is more easily visualized in the complex
plane, it corresponds to the sum of N vectors of module 1 and
which angle are at the vertex of a polygon with N sides if r 6= s.
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Case of a real signal.

Figure : On the left, k = 2 mode for N = 32, only the points are
meaningful in view of the data sampling, the dotted lines are a guide for
the eyes. In red, the cosine, in blue the sinus. On the right, k = 16 mode
for N = 32. For this particular mode k = N/2 the real part in cosine
takes only the alternating values +1 and -1, we have drawn the cosine in
dashed lines as a guide for the eyes. The imaginary component in sinus
(not represented) is null since the signal points are sampled exactly when
the sinus is equal to zero.
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Case of a real signal.

The signal may be written Sr ∈ R with r ∈ [0,N[ in real space, the
Fourier components write :

Re(ak) = α

N−1∑
r=0

Sr .cos(−2.iπ.k .r/N)

and

Im(ak) = α

N−1∑
r=0

Sr .sin(−2.iπ.k .r/N)

with k ∈ [0,N/2]. The k = 0 mode is special since its imaginary
parts is null. The k = 1 mode corresponds to a single oscillation of
a cosine or a sinus covering the entire signal that is [0,N]. All
modes are strictly periodic in the signal window. The k = N/2
mode is again very special.
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Case of a real signal.
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Figure : On the left, square wave signal in real space with a period of 32
pts over N = 1024. On the right, the power spectrum in log scale. One
notices that this spectrum contains only sharp peaks corresponding to
odd harmonics with k = (2.n + 1).32. All the other modes just contain
numerical noise.
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Reconstruction of a square wave signal.

Figure : It is possible to reconstruct a square wave signal by adding the
different odd harmonics of its fundamental frequency. We present here
reconstructions at various stages.
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Case of a Dirac signal

Figure : On the left, Dirac signal in the time space with N = 32. On the
right, ensemble of all Fourier components of this Dirac peak. In the
middle, peak reconstruction using these components drawn with
interpolation between the 32 initial points. In fact the Dirac peak is a
cardinal sinus which maximum is located on the peak. On the other
hand, the fact that the 31 remaining points in real space are null is
related to the fact that these points are located precisely on the zero of
the sinus cardinal.
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Periodic signals and Dirac combs

Figure : The Fourier transform of a Dirac comb is also a Dirac comb. On
the left, Dirac comb in real space with a peak every 64 points over 1024
total points. On the right, Power spectrum of the signal on the left with
one peak every 16 modes.
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Relation between phases and offset (delay theorem)

φ(k) = −2.π.k .δx/N,
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Figure : On the left, the original signal shifted by half a pixel using the
Fourier transform method. As this signal contains high frequency
components, the shifted signal exhibits ringing. On the right, the shifted
signal has first been low-pass filtered to suppress high frequencies
components, now the shifted is smoother.
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Fourier transform and correlation function.

C (τ) =
N−1∑

0

X (t).Ỹ (t − τ)

C (τ) =
N−1∑
t=0

N/2−1∑
k=−N/2

Xke2i .π.k.t/N .

N/2−1∑
k ′=−N/2

Ỹke2i .π.k ′.t/N .e−2i .π.k ′.τ/N

That is

C (τ) =

N/2−1∑
k=−N/2

Xk .

N/2−1∑
k ′=−N/2

Ỹ ′k

N−1∑
t=0

e2i .π.(k+k ′).t/N .e−2i .π.k ′.τ/N
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Fourier transform and correlation function.

The sum over t is non-zero only if k = −k ′, leading to

C (τ) =

N/2−1∑
k=−N/2

Xk ˜Y−ke2i .π.k.τ/N
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Example of correlation function
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Figure : On the left, experimental signal of the Brownian motion of a
bead attached to a DNA molecule. On the right, autocorrelation function
of the signal on the left (in blue), this demonstrates that the fluctuations
have some memory with a characteristic time of half a second (see insert).
At a longer time, the autocorrelation function presents only noise.
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Convolution product : 1D crystal
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Figure : On the left, construction of a 1D Â« crystal Â» : a) signal, b)
Dirac comb, c) convolution product of a) by b) leading to a periodic
signal. On the right, power spectrum of the signal a) (green continuous
line), and of the periodic signal c). This signal appears as the product of
the Dirac comb (not shown) by the one of the original signal. The
analogy with a crystal allows better understanding X-ray pictures of
crystals : the interesting information is inside one cell, one get it by
inverse TF of the diffraction peaks.
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Convolution product and Fourier transform.

For continuous signal, the convolution product writes :

f ⊗ g(τ) =
∫ ∞
−∞

f (t).g(τ − t)dt

For a discrete signal

f ⊗ g(τ) =
N−1∑

0

fr .gτ−r

Writing f (r) and g(τ − r) in Fourier and using the delay theorem,
one obtains the interesting relation :

f⊗g(τ) =
N−1∑
r=0

N/2−1∑
k=−N/2

Fke2i .π.k.r/N .

N/2−1∑
k ′=−N/2

Gk ′e−2i .π.k ′.r/N .e2i .π.k ′.τ/N
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Convolution product and Fourier transform.

That is

f ⊗ g(τ) =
N/2−1∑

k=−N/2

Fk .

N/2−1∑
k ′=−N/2

G ′k
N−1∑
r=0

e2i .π.(k−k ′).r/N .e2i .π.k ′.τ/N

Where the sum over r is not null only if k = k ′, which leads to

f ⊗ g(τ) =
N/2−1∑

k=−N/2

FkGke2i .π.k.τ/N
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Convolution and de-convolution
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Figure : On the left (blue) the signal (512 points), in green Gaussian
response function with a width of 2 points. In red convolution of the blue
signal by the green response function. In magenta, de-convolvution of the
red signal by the green one using the FT. On the right, Fourier mode
amplitude of the signal shown on the left with the same color coding.
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Frequency filtering

Figure : Comparison of three low-pass filters having the same fc = 16 but
with different shapes. On the left, transmission coefficients in Fourier
space, equals 1 for modes such tha f < fc −w, null when f > fc +w and
in the medium area T = (1 + sin(π.(fc − f )/2.w))/2. On the right,
impulse response of these filters in real space. The pulse width is
equivalent since all filters have the same cutoff frequency at mid-height,
but the decay of the ringing strongly depends on the width w of the
filter.
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High-pass and pass-band filters

0 20 40 60
 0 

 0.5 

 1 

mode f

ga
in - fc = 32 

- w = 8 

Passe-haut
fc = 32, w = 8

0 25 50 75 100 125

 -0.5 

 0 

 0.5 

 1 

Temps

0 20 40 60
 0 

 0.5 

 1 

ga
in

- wh = 8 

fch = 32
        

 fcl = 16
      

 

- wl = 8 
 -0.5 

 0 

 0.5 

 1 
Passe bande
fcl = 16 wl = 8
fch = 32 wh = 8

Figure : Pass-band and high-pass filters (working over 128 points in real
space). On the left, Fourier coefficient in Fourier, pass-band on the top,
high-pass on the bottom. On the right, real space impulse responses of
those filters .
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Non-periodic signals.
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Figure : TF of a sinus signal with a period commensurable with the
analysis time window (on top f = 16), incommensurable (f = 16.5). On
the left, the signal in real space has been shifted by N/2, for the top
signal, the periodicity is perfect, for the bottom signal the shift leads to a
phase jump. On the right, TF of each signal, the occurrence of a phase
jump leads to strong perturbations in the spectrum.
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Hanning Window F (r) = (1− cos(2.π ∗ r/N))/2
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Figure : Hanning window effect on the FT of a sinus signal
commensurable with the analysis signal window (on top f = 16) and of
an incommensurable one (f = 16.5). On the left, the signal in real space
is multiplied by a Hanning window. On the right, FT of each signal, for
the top signal, the window leads to a wider peak, for the bottom one, the
phase jump effect is strongly reduced.
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Hamming window F (r) = 0.54− 0.46.cos(2.π ∗ r/N)

0 5 10
 2.075 

 2.1 

 2.125 

 2.15 

 2.175 

 2.2 

Indice

Va
le

ur
- Original

 - LP 

0 5 10

Indice

- Original

 - LP-Hamming

Figure : Effect of Hamming window on filtering a signal non-periodic with
the analysis window. On the left, the signal in real space treated directly
with FFT. Has the signal has a discontinuity, the filtered signal presents a
strong perturbation at its extremities. On the right, the signal was first
multiplied by a Hamming window before low-pass filtered in Fourier
space, in real space the signal was multiplied by the inverse of the
Hamming window. The discontinuity at the edge has now gone.
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Low-pass filter of order 1, case of the RC circuit
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Figure : Spectrum of the bead Brownian fluctuations tethered to a DNA
molecule. This spectrum averaged four times is fitted to a Lorenzian. One
needs to compare with the correlation function of figure 9since it applies
to the same signal.
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Low-pass filter of second order
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Figure : Power spectrum of the displacement of the membrane of a
loudspeaker as a function of the frequency of excitation with log-log
scale. We have made the friction coefficient variable in a wide range so as
to span the extreme case over high-quality resonance factor or of the
over-damped situation.
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Hilbert Transform
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Figure : Principle of the Hilbert transform.
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Principle of analog conversion

Figure : Principle of digital to analog converter relying on a R/2R
resistance network.
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Filtering before digitizing a signal, Shanon theorem
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Figure : Spectrum folding and aliasing mechanism : A) a signal of
frequency k = 17 displayed over 1024 points. B) Fourier transform of A).
C) Dirac comb corresponding to the digitaliezation with 64 points of
sampling leading to 16 samples. D) FT of the Dirac comb, presenting
peaks at k = n.1024/64 = n.fs with n ∈ Z b). E) The sampled signal
appears as a sinus with k = 1.
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The special case of image sensors : CMOS and CCD cameras

They now have a few millions of pixels that act as independent
sensors read synchronously. It is impossible to place a filter for each
pixel before digitizing, thus video shot are prone to strong temporal
aliasing artefacts. Using an integration time close to the sampling
period reduces this aliasing (by filtering in averaging) but does not
suppress them totally. Cameras also have spatial aliasing that is
reduced by a blurring filter place just close to the pixel matrix.
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Shooting a picture of an object without a lens.

Figure : Diffusion of a monochromatic wave by a semi-transparent object.
A plane wave of wave vector ~ki impact a transparent object which
slightly diffuses light (in blue). The wave is diffused in different directions
of space. If we consider the direction ~kd , the intensity of the diffused light
by each point by ~r of the object suffers a phase shift φ = (~ki − ~kd).~r . The
expression of the diffused light is nothing but the FT of the object with
the wave vector ~ki − ~kd .
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Protein structure, the diffraction of X-ray on a crystal.

Figure : On the left, the build-up of a two-dimension crystal : a small
image is replicated in a periodic fashion in two directions x et y to form a
picture of 512 x 512 pixels. We have added numerical noise (to simulate
an experiment). On top the FT of this image leads to 512x256 complex
modes represented par the log of their amplitudes. Many modes are very
weak and appear white a few strong modes show up as black dots. These
black peaks are organized following a Dirac comb in two dimensions. If
we suppress all weak modes and keep only the strong modes, we filter out
the noise of the original image. The inverse FT of this filtered image is
shown at the bottom right where the original person is nearly
recognizable.
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Position measurement with subpixel resolution
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Figure : The algorithm allowing to measure a micron size bead. On the
left, the image of the bead and of a superimposed cross allowing the
bead tracking. In the middle, intensity profile in X along the horizontal
arm of the cross. This profile presents complex intensity modulations
variable in time. The bead profile is symmetrical and we notice that it is
slightly off centered on the right. On the right, auto-convolution of this
profile (without its continuous part). This function present a positive
maximum when δx is twice the offset of the profile with its center. By
interpolating this maximum by a polynomial we can evaluate its position
with an accuracy reaching the nanometer.
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Particle Image Velocimetry PIV

Figure : Principle of PIV. We see here two consecutive images Im0 and
Im1 (in inverted contrast) of one micron particles which diffuse the light
of a laser beam. The two images have been taken 100 ms apart showing
the displacement of the cloud of particles. Here all the particles have the
same downward translation speed. If we compute the correlation function
of these two images, we obtain the image at the bottom left (shifted by
nx/2 and ny/2). The correlation image presents a positive peak. We
show sections of this peak on the curve on the right. This peak is
centered along x but presents a shift of 9 pixels along y. Thus the flow
speed is essentially along y and equals to 90 pixels/s.

Vincent Croquette Fourier transform



Tomography

The Fourier transform of a projection is a profile in Fourier space
passing by its origin. All the components of the original images
along the projection direction are averaged leading a a zero width
of the profile. Using the change of variable (~x , ~y) towards (~u, ~v)
Where ~v is the projection direction, we can write the intensity of
the projection like :

P(u) =
∫ +∞

−∞
ρ(u, v)dv

and its FT like :

P̃(ku) =

∫ +∞

−∞

∫ +∞

−∞
ρ(u, v)e−iku .udu.dv

= P̃(ku, kv = 0) =
∫ +∞

−∞

∫ +∞

−∞
ρ(u, v)e−i(ku .u+(0.v))du.dv

We notice that the FT of the profile may be expressed as the
2D-FT of the image density with kv = 0 and ku whatever.
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Principle of the tomography applied to a picture.

Figure : Here, we shall reconstruct an image (the original one is at the
bottom right) by having only access to projections of this image in a set
of angular directions. We obtain an evaluation of the FT as shown in the
image on the top left. This evaluation is actually missing many Fourier
modes (located outside the lines). A better process consists in performing
a change of variable switching from polar coordinates to Cartesian one as
shown on top right. If we use only 16 equidistant projection angles, we
obtain a limited resolution (bottom center). By increasing the number of
projections to 256, the resolution becomes nearly perfect (bottom right)
that may be compared with the original.
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