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Abstract
The goal of this chapter is to specify the conditions re-

quired for a physical system to exhibit chaotic behavior.
We shall see that it is necessary that this system is non-
linear and possesses at least three degrees of freedom. A
rigorous study of such a system being extremely delicate,
we shall limit to a qualitative graphical approach. We shall
introduce phase space and its remarkable elements. We
shall introduce some preliminary characteristics essential
for dynamical systems. Each one is illustrated by a simple
example. We shall first introduce known regular systems to
end up with simple chaotic systems. We shall discuss sys-
tems having two degrees of freedom, linear and nonlinear
and then those having four degrees of freedom exhibiting
chaotic behavior. We shall derive the minimal necessary
conditions for a system to display chaotic behavior. Finally,
we shall propose criteria allowing to characterize regular
and chaotic behaviors.

1 Definitions

1.1 Physical system representation
To describe the dynamical evolution of a physical system it is
convenient to use its graphical representation. Each system state
is associated to a vector ~X .Following the dynamical evolution
of the system corresponds in observing the evolution of ~X in a
vector space E named phase space. This evolution is described
by an ensemble of n differential equations associated with initial
conditions :

d ~X

dt
= F ( ~X) (+c. i. : ~X(t=0)) (1)

The application describing the time evolution of the vector E
is called a flow.

1.2 Phase space and degrees of freedom
This type of vector equation describing the determinist evolution
of a physical process is studied through the theory of ordinary
differential equations. The vector space E is characterized by its
dimension n. This number is also the number of degrees of free-
dom of the considered dynamical system.
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2 V. CROQUETTE

FIGURE 1 – The harmonic oscillator is made by a mass m atta-
ched to a spring k.

The concept of phase space first introduce in mechanics [1],
where we find our first example of dynamical system : the har-
monic oscillator in one dimension. Its position is determined by
the variable q. To fully determine its state we need to specify its
impulsion p. The phase space is thus of dimension two, implying
that the harmonic oscillator has two degrees of freedom. This
definition differs from the classical one in mechanics where a de-
gree of freedom is associated to each couple of variables (q, p)
[1]. Generally the F function may be differentiated a sufficient
number of times and maybe nonlinear. In the harmonic oscillator
case (see Fig.1) the function F takes the form 1 :{

∂q/∂t = p/m
∂p/∂t = −kq (2)

1.3 Fixed points, invariant sub-spaces
The dynamic behavior of a dynamical system can be studied by
characterizing its equilibrium points so-called fixed points :

d ~X0

dt
= ~0 = F ( ~X) . (3)

The stability is studied by linearizing F near these points ~X0.
This leads to linear equations :

d ~X

dt
= LX0

( ~X) (4)

Where L is the tangential application to F en ~X0. Eigen values
and vectors of L determine the time evolution of the system in
the vicinity of ~X0.

2 Linear dynamical systems
Dynamical systems cover a broad range of situations : from me-
chanical systems to electronic, chemistry, thermal, etc. To illus-
trate the definitions that we have just given, and in particular
to illustrate the various types of fixed points, we propose some
simple mechanics examples.

2.1 Bead at the top of a hill
Let us now consider the case of a particle on top of a parabolic
hill. This is a two degrees of freedom problems with : position q
and impulsion p, related to the following equations :{

∂q/∂t = p/m
∂p/∂t = kq

(5)

The fixed point is the origin (q = 0, p = 0). Its stability is
obtained by finding the Eigen values of the following matrix :(

0 1/m
k 0

)
(6)

1. The classical form is given by a second order differential equation : mq̈ +
kq = 0. We shall prefer to use two coupled first order differential equations
which correspond to the phase space variables.

The Eigen values are λ = ±
√
k/m and the associated Eigen

vectors : ~V±

(
1

±
√
km

)
. The phase space is represented in the

figure 2, a trajectory corresponding to a solution of the form :

~V = ~V+ exp(
√
k/m t) + ~V− exp(−

√
k/m t) (7)

When the Eigen values verify the relation λ− < 0 < λ+, one
qualifies the fixed point as saddle point or (saddle node).

FIGURE 2 – Phase space trajectories of a bead at the top of a hill
illustrating a saddle node. They escape all to infinity, except those
who initiate exactly along the contracting direction who leads
exactly to the unstable point of top of the hill. The hyperboles
which x > 0 correspond to the case where the initial speed of the
bead is too small to pass the hill.

As we could expect, the equilibrium point is unstable since
one positive Eigen value exists, this means that there exists one
direction in the phase space along which trajectories escape from
the origin. The close trajectory corresponds to the case where the
bead is launched far away from the top of the hill with an initial
speed just sufficient to reach that point. The other trajectories
correspond to the other cases : either the initial speed is too large
and the bead pass over the hill and escapes on the other side or it
is too weak and the bead turns back before reaching the hill top.

2.2 Bead at the bottom of a well
Now let us consider a bead at the bottom of a parabolic well. This
system has two degrees of freedom associated with the position
q and the impulsion p : this is in fact the harmonic oscillator with
the following equation 2. The fixed point is still (q = 0, p = 0).
To study the stability of the system, let us look for the Eigen
values of the matrix : (

0 1/m
−k 0

)
(8)

The Eigen values are complex conjugates λ = ±i
√
k/m and

the Eigen vectors : ~V±

(
1

±i
√
km

)
. A trajectory corresponds

to a solution having the form :

~V = ~V+ exp(i
√
k/mt+ φ) + ~V− exp(−i

√
k/mt+ φ) (9)

The phase space is represented on the figure 3. The trajectories
are now ellipses. The motion is an oscillation having a frequency
independent of the amplitude (the "radius" of the ellipse) given
by the Eigen values ω0 =

√
k/m. As the Eigen values are com-

plex, the fixed point is called focus or center.
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FIGURE 3 – Trajectories in phase space of a bead in a parabo-
lic well or a harmonic oscillator. These trajectories are traveled
in the same way as the needles of a watch. The fixed point is a
center.

2.3 The different types of fixed points

For real Eigen values, the fixed point is a stable node if they are
all negatives, a saddle point if some are positive. For complex
Eigen values, the fixed point is a focus or a center.

3 Hamiltonian and dissipative systems

The examples that we have discussed display significative dif-
ferences allowing to distinguish specific classes of systems. The
two mechanical examples conserve the system energy. During the
time evolution there is only conversion from potential to kinetic
energy. Of course, this is only valid in the absence friction.

Hamiltonian systems or conservative systems correspond to
systems that conserve energy and dissipative systems the others.

3.1 Invariant area

The phase space of Hamiltonian systems presents remarkable
characteristics. On the one hand, two distinct trajectories have no
common points. This is a direct consequence of the determinist
character of the system : since identical initial conditions lead to
the same trajectory and since all points of the phase space may
be considered as initial conditions, a common point implies that
the trajectories are the same. On the other hand, the Hamiltonian
systems conserve areas in phase space, this is the LIOUVILLE
theorem. Let us consider a volume Ω at time t0, and let us follow
its evolution in time, this volume will distort in time, but its vo-
lume will remain the same. This corresponds to the fact that the
divergence of d ~X/dt is null :

dv

dt
=

∫
Ω(t)

div

(
d ~X

dt

)
dv

=

∫
Ω(t)

∑
i

(
∂

∂qi
.
∂H

∂pi
− ∂

∂pi
.
∂H

∂qi

) (10)

where v is the volume in phase space of the domain Ω(t) it is mo-
ved around by the flow ofH the system Hamiltonian. For Hamil-
tonian systems, this leads to an interesting property of the Eigen
values of a fixed point : the sum of their real parts is always null.
The bead on top of a hill falls with an Eigen value +

√
k/m but

it exists in a trajectory bringing back the bead to the hill top with
an opposite Eigen value.

3.2 Dissipative systems
A simple way to obtain a dissipative system consists in adding
friction terms to a Hamiltonian system. In the case of the harmo-
nic oscillator, the equation becomes :{

∂q/∂t = p/m
∂p/∂t = −kq − γp (11)

It is easy to see that the friction term γ induces a real part in
the Eigen values λ± which transforms the elliptic trajectories in
the case without friction to spirals converging towards the origin.
It is easy to study the effect of γ on saddle points. Dissipative
systems may also correspond to an increase of the system total
energy : this corresponds to a negative γ value.

4 Nonlinear Hamiltonian Systems
The Hamiltonian systems have been intensively studied [2, 3], it
is possible to draw the necessary conditions to obtain a chaotic
trajectory. As we shall see, the nonlinear character of the equa-
tion is essential. However, all nonlinear systems do not display
chaotic behavior, as we shall illustrate with the two following
example :

4.1 Bead in a two well potential
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FIGURE 4 – Representation of the surface of total energy as a
function of the bead position and speed for a bead in a two well
potential.

A system is nonlinear as soon as its governing equations contain
a nonlinear term of ~X . This is for instance the case if the force
acting on the bead writes : ∂p/dt = q−q3. This situation corres-
ponds to a bead placed in a potential having two wells, located at
q = ±1. The system has two degrees of freedom and is governed
by the equations : {

∂q/∂t = p/m
∂p/dt = q − q3 (12)

The exact solutions of the equation 12 are far less easy to de-
termine than those of a linear system. We shall see later that it
might be impossible to solve some nonlinear systems. Here we
propose a qualitative approach to evaluate the trajectories in the
phase space. We start by looking for the fixed points of the sys-
tems, there are three of them :
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A−1 =

(
−1
0

)
A0 =

(
0
0

)
A1 =

(
1
0

)
(13)

Around each, we shall linearize the equations 12. Close to the
origin, we recover the equations 5, thus we can say that this fixed
point is a saddle node. For the two remaining ones : A−1 and A1,
the linear equations are those of 2. These fixed points are cen-
ters of elliptic trajectories. To obtain the trajectories in the entire
phase space, one is tempted to extend by hand the motif formed
by the saddle point and the two centers. In fact, there is a rigorous
way to proceed. We have seen that Hamiltonian systems conserve
energy in time. If we draw a three-dimension graph where two
dimensions correspond to those of the phase space and the third
one to the system total energy, we get a surface S with a saddle
node at the origin separating two wells around each fixed point.
Since the energy is invariant, a trajectory of the movement cor-
responds to a cut of the surface S at constant energy. The system
trajectories are equivalent to contour level lines of the surface S,
as drawn in the figure 5.

FIGURE 5 – Phase space trajectories of a bead moving in a two
wells potential corresponding to the contour lines of the surface
shown in the figure 4.

The method that we have just described is quite general : it
does not depend on the nonlinear potential of the system and
may be applied to all Hamiltonian systems having two degrees
of freedom. As long as the surface S is not pathological, we shall
obtain either closed trajectories or trajectories going to infinity.
However, this method does not provide the actual dynamics of
these movements. Still, closed trajectories correspond to perio-
dic motions, although it is not possible to find their period by
this method. Close to the center fixed points, the frequency of
the movement is that of the corresponding harmonic oscillator.
When we come close to a saddle point, the period increases and
will diverge on reaching the saddle point.

4.2 The gravity pendulum
We will come back in many occasions to this pendulum example
which constitutes one of the simplest nonlinear systems. It has
two degrees of freedom (in a dynamical view) : its angular posi-
tion θ and its angular velocity θ̇. They are governed by the equa-
tions : {

∂θ/∂t = θ̇

∂θ̇dt = −g/l sin θ (14)

We can repeat the same analysis that we have done in 4.1. The
phase space origin appears as a center point. This is the domain of
small oscillations. If θ is restricted to the interval [−π, π], we find
two saddle nodes fixed points in θ = ±π and θ̇ = 0. The contour

FIGURE 6 – Trajectories in phase space of the pendulum motion.
The phase space is periodic in the direction θ, upon reaching (+π,
θ̇) the trajectories come back in (−π, θ̇). The trajectories called
passing, correspond to the case where the pendulum has a ro-
tating movement. The closed trajectories at the center describe
oscillations of the pendulum. The trajectory which bounds these
two types of motion goes from one saddle point to the next in
(±π, O) ; It is called the separatrics.

lines at constant energy lead to the figure 6. There exists a very
peculiar trajectory joining these fixed points : it is the separa-
trics. When one follows this trajectory, the pendulum starts from
the upside-down position (θ = −π), gently separates from this
point and then quickly turns around the θ = 0 point and finally
climbs back to reach asymptotically θ = π. The name separa-
trics illustrates the fact that this trajectory is the frontier between
closed trajectories corresponding to oscillations of the pendulum,
with passing trajectories for which ¯̇

θ 6= 0 or ¯̇
θ represent the ave-

rage rotation velocity. These passing trajectories correspond to
continuous rotation pendulum motions.

5 Integrability of Hamiltonian systems

A system is said integrable when it is possible to completely des-
cribe mathematically its trajectories in phase space. We have just
seen two examples of such nonlinear systems. The fact that the
energy is conserved is a characteristic property of a Hamiltonian
system, allowing to determine its trajectory if it has two degrees
of freedom. As a result, all nonlinear Hamiltonian systems having
two degrees of freedom are integrable. This does not mean that
it is easy to find the analytical solutions of the motion equations,
but that they exist. Now for systems shaving a larger number of
degrees of freedom n, the invariance of the energy remains, but
now only tells us that the solutions belong to a space of dimen-
sions n−1. But this does not allow anymore to fully characterize
these solutions. However, during our mechanics lectures, we do
have encountered examples of systems having more than two de-
grees of freedom and for which we have been able to obtain ana-
lytically their solutions. We shall recall two such examples which
will allow to illustrate the necessary conditions for integrability.

5.1 System of two coupled harmonic oscillators

Let us consider two linearly coupled harmonic oscillators as
sketch on figure 7.

We now need four equations to describe the system :
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FIGURE 7 – System of two linearly coupled harmonic oscillators.


∂q1/∂t = p1/m
∂p1/dt = −Kq1 + k(q1 − q2)
∂q2/∂t = p2/m
∂p2/dt = −Kq2 + k(q2 − q1)

(15)

As the equations are linear, we know that it is possible to find
solutions. Finding them consists in finding the Eigen values and
vectors of a matrix. In other words, there exist a base change
where this matrix is diagonal, meaning that in this base, all the
coupling between the equations disappear (here the change of va-
riable is u = q1 + q2 and v = q1 − q2). In this new base, we can
separate the coupled oscillators in new oscillators which are inde-
pendent having two different frequencies : ω+ =

√
(K + 2k)/m

and ω− =
√
K/m. The motion is the composition of two oscil-

lations. We have seen that one oscillation leads to a closed trajec-
tory in phase space (for a harmonic oscillator this is an ellipse).
The combination of the two oscillations leads to a torus surface.
Thus we can say that the dimension of the trajectory in phase
space is two. The phase space being of dimension four, the energy
invariance only restricted the trajectory dimension to three, thus
an extra peculiarity of the problem restricted even further the di-
mension of the trajectory to two.

5.2 Two bodies problem with a central force field
The problem of two interacting bodies is a long-standing one.
This is typically the two bodies’ problem (the Earth and the Sun,
for instance). As the bodies actually move along three directions
of physical space, the phase space of such a system should be of
dimension 12, since one needs to add three more position coordi-
nates for the second bodies and the same number of impulsions.
We shall see how it is possible to separate the different degrees
of freedom and to predict the motion of this system.

FIGURE 8 – Two bodies in interaction with a central field force,
the motion evolves in the plan Σ perpendicular to the kinetic mo-
mentum.

Assuming that the two bodies are not submitted to other exter-
nal forces and since their interaction only depends on the distance
separating them, the motion of the center of mass is just a trans-
lation with a uniform speed [1], and each speed component is
invariant in time. As we can associate three variables of position
and three of impulsions to the center of mass, we can reduce by
the same amount the number of remaining degrees of freedom by
placing ourself in the center of mass referential. We now need to
determine the motion of a single body submitted to a central field

force, which means that the force is always directed towards the
origin, and which strength only depends on the modulus of the
distance to the origin r. The kinetic momentum of this particle
~M = ~r × ~p is by definition perpendicular to ~r and to the force

vector, and thus invariant in time. This property imposes that the
motion is bound in a plane perpendicular to ~M . We have just
shown that the system may be described by two position coordi-
nates and two impulsions. Moreover, the invariance of the kinetic
momentum allows to determine the motion trajectory. Using po-
lar coordinates (r, φ), the energy of the system may be written :

E =
m

2

(
ṙ2 + r2φ̇2

)
+ U(r) =

mṙ2

2
+

M2

2mr2
+ U(r) (16)

Where U(r) is the interaction potential. Thanks to the kinetic
momentum invariance, this energy does not depend explicitly of
φ, and takes the form of an oscillator with an effective potential :

Ueff = U(r) +
M2

2mr2
(17)

In this process, we have separated the coupled degrees of free-
dom in independent couples of conjugate variables (qi, pi). As all
systems having two degrees of freedom are integrable, we know
that the problem of the oscillator in the potential Ueff is inte-
grable, whatever the potential form of U(r). The final motion is
thus the composition of an oscillation in the potential Ueff with a
rotation at constant speed φ̇ = M/mr2. The oscillation is boun-
ded between the two positive values rmin and rmax. The rotation
is again a periodic behavior. Thus the trajectory in phase space is
the combination of two closed curves : it has the topology of a
torus. The projection of a typical trajectory in the plane (r, φ) is
given in the figure 9.

FIGURE 9 – Trajectory of a particle in a central force field : it is
the combination of a rotation and an oscillation.

5.3 Importance of invariants, separable systems

The two examples that we have just discussed allow us to gene-
ralize the integrability concept. A system is said integrable if it is
possible to break it in couples of independent conjugate variables,
that is to say that it can be separated in independent oscillators.
As we know how to describe the trajectories of all oscillator with
two degrees of freedom (a position variable and an impulsion),
the global trajectory of a system made of separable oscillators is
the combination of the different oscillating behaviors. Although
we can define integrability, there is no faithful method allowing
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6 V. CROQUETTE

to realize this separation of the system in independent oscilla-
tors. In our two examples, we have used the existence of special
symmetry of the system to find the adapted change of variables
leading to independent oscillators. The existence of invariants (as
the kinetic momentum) is a valuable indication towards integra-
bility. The integrability of a system having a phase space of 2n
dimensions, implies the existence of n invariant. As a matter of
fact, among the Hamiltonian systems, the trajectories of those
that are integrable just explore a subspace corresponding to the
composition of n oscillations, this subspace is of dimension n.
For a non-integrable system, the minimal restriction corresponds
to the invariance of the energy which leads to a trajectory ex-
ploring 2n − 1 dimensions of the phase space. Thus integrable
systems may be viewed as peculiar systems, far less general that
all systems.

6 Existence and characterization of
chaos

We have just discussed the integrability concept of Hamiltonian
systems, we shall now describe briefly the consequence of the
absence of integrability for a system.

6.1 Two bodies in a non-central force field

What happens when the force field has no central symmetry ?
First, if the force field is not anymore central, the kinetic momen-
tum is not anymore invariant and we cannot decouple the radial
oscillation from the rotation with φ. No need to say that solving
the problem analytically to obtain the trajectory of a system be-
comes impossible.

N

S

N

S

X

Y

r

φ

N

S

FIGURE 10 – Magnetic pendulum device allowing to switch from
a system having the central symmetry to one without this sym-
metry. In this last case, it allows to visualize chaotic solutions.

The simplest way to understand what is going on is to realize
a small experiment. If we attach a magnet by a thread to form
a pendulum, this device might explore the direction x and y (or
more exactly θ and φ) with the corresponding impulsion ẋ and
ẏ. We place a second magnet fixed just at the vertical of the pen-
dulum at rest, we build a central force field system which allows
recovering the trajectories of the figure 9. If now, we replace the
central fix magnet by two magnets symmetrical around the ori-
gin, we create a force field that is not anymore central. Pushing
the magnetic pendulum on the side leads to a special trajectory

where the moving magnet is attracted now by two magnets buil-
ding a double well potential. The trajectory of the pendulum will
explore the two basins of attraction performing a complex but
well define motion. Most of the time this trajectory is chaotic, a
typical example is shown in the figure 11.

FIGURE 11 – Trajectory of a magnetic pendulum under the in-
fluence of a non-central force field.

6.2 Chaos characterization : power spectrum
A simple way to characterize chaos consists in performing a Fou-
rier spectrum of the temporal evolution of one variable of the sys-
tem. We have seen that the trajectories of a regular Hamiltonian
system is the composition of oscillations each having a pulsation
ωi. The spectrum of such a variable contains a series of peaks
located at integer values of ωi, and to their harmonics mωi with
m ∈ N , and to linear combination of frequencies mωi + nωj
with m and n ∈ Z (see figure 12). Spectrums that are the com-
bination of several frequencies with no simple relation are said
quasipériodic.

FIGURE 12 – Power spectrum of a magnetic pendulum with a
central force field, showing a regular motion. One notice the exis-
tence of two frequencies and their harmonics.

The oscillation of the magnetic pendulum with two fixed ma-
gnets in a configuration breaking the central force field symme-
try leads to a completely different spectrum without well-defined
frequency peaks but rather broad band noise, as shown in the fi-
gure 13

ESPCI Signaux et Images
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The existence of broad band noise in the power spectrum of one
variable of a system is clearly a sign characterizing chaotic be-
haviors. However, aside this broad band noise, such a chaotic
system may also display sharp peaks in the spectrum.

FIGURE 13 – Power spectrum of a magnetic pendulum having a
chaotic behavior.

6.3 Characterization of Chaos : sensitivity to ini-
tial conditions

A more straightforward way to demonstrate that a trajectory is
chaotic, consists in measuring it degree of non-predictability.
Even though the non-symmetric magnetic pendulum is non-
integrable, it is still a deterministic system. Two experiments
starting from rigorously the same initial conditions, evolve with
exactly the same trajectory. But if the initial conditions are not
rigorously alike, the distance separating them in phase space will
evolve very differently if the trajectory is regular or chaotic.

FIGURE 14 – Time evolution of the distance between two close
by trajectories for the central force field magnetic pendulum. No-
tice the linear scale for the distance. The fast oscillations corres-
pond to the oscillating behavior.

As a matter of fact, for a regular trajectory, like the magnetic
pendulum under a central force field constrain, the amplitudes of
oscillations, but also their frequencies, will be slightly different
owing to the initial conditions. This will lead to a linear increa-
sing phase shift between the oscillations, as two watches not per-
fectly tuned will do. For regular trajectories, the two systems with
slightly different initial conditions will separate in phase space

with a distance growing linearly in time on average as shown
figure 14.

For a non-integrable system presenting chaotic solutions, like
the dissymmetric magnetic pendulum, the oscillations arising
from the two different initial conditions are well correlated at the
beginning, but they quickly lead to strongly different leading to a
complete loss of correlation after a few oscillations. In this case,
the distance between the two trajectories increases exponentially
with time. Notice that this evolution is not homogeneous in time,
but this is only true on average. Once the trajectories are uncor-
related, the distance is bounded by the size of the trajectory as
shown in the figure 15.

7 Systems with a single frequency
Let us comeback first, to the two regular examples of the particle
in a double well potential and the gravity pendulum to highlight
some fundamental features of non-linear systems which will be-
come extremely important for chaotic systems. In particular, we
shall discuss the occurrence of harmonics and the notion of reso-
nance.

FIGURE 15 – Time evolution of the distance between to close by
chaotic trajectories. Notice the log scale. At t = 40, the distance
saturates since the distance become comparable to the size of the
explore domain in phase space.

7.1 Small oscillation and existence of harmonics
The particle in a two wells potential allows illustrating the per-
turbation method for small oscillations. The force acting on the
particle has the form : f(q) = q − q3 ; For small oscillations the
system remains close to the stable equilibrium points : q = ±1.
Close to the point q+ = 1, using the variable swap u = q−1, the
form of the force becomes : f(u) = −2u− 3u2− u3. Obviously
the linear term in u leads to an oscillation with the frequency
ω0 =

√
2. Let us examine the non-linear terms separately u2 u3

and in a perturbation approach. Thus we write :{
du/dt = u̇
du̇/dt = −2u− 3εu2 (18)

And we will look for a solution having the form :

u = u0 + εu1 + ε2u2 + · · · (19)

Solving order by order, we obtain :
At order 0 :
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lThe linear equation leads u0 = A cos(ω0t) with ω2
0 = 2.

At order 1 :{
du1/dt = u̇
du̇1/dt = −2u1 − 3A2 cos2(ω0t)

(20)

By expanding the term in cos2(ω0t) under the form :

(A2/2) [1 + cos(2ω0t)]

Let us decompose u1 in two parts u10 et u12 corresponding res-
pectively to the frequencies 0 and 2ω0.

We obtain u10 = −3A2/4, which corresponds to the shift
in the mean position of oscillation, induced by the dissymme-
try of the potential, relative to the transformation +u → −u.
Stiffer on the u > 0 side, the motions are easier on the u < 0
side. 2 The contribution at the frequency 2ω0 takes the form

FIGURE 16 – Power spectrum of the position of a particle os-
cillating in a non-linear potential. One notice the existence of
harmonics of the oscillation frequency.

u12 = (A2/4) cos(2ω0t) and corresponds to the occurrence of
a second harmonic. Like in the case of the zero harmonic, Its am-
plitude varies like A2. This justifies the perturbation approach in
the limit of small oscillation amplitudes.

Let us proceed in the same way for the cubic term :{
du/dt = u̇
du̇/dt = −2u− εu3 (21)

Order 0 leads again to the linear solution. Order 1 leads to the
occurrence of a forcing term inA3 cos3(ω0t) = A3/4(cos 3ω0t+
3 cosω0t), which corresponds to a contribution at the frequency
3ω0 and to another one at frequency ω0. If the 3ω0 contribu-
tion leads to the occurrence of a third harmonic, as expected,
the contribution ω0 is precisely the linear resonance frequency of
the system. But it leads to a term like u31 ∝ −(3A3/4)t sinωt,
which is a contribution with an amplitude growing continuously
in time ! This behavior is incompatible with a perturbation ap-
proach of this computation. The failure of this method is related
to the assumption that we have implicitly made on the invariance
of the oscillation frequency.

7.2 Evolution of the oscillation period
To obtain a correct perturbation approach, we must assume that
u is a periodic function of the frequency ω such that :

ω = ω0 + εω1 + ε2ω2 + · · · (22)

2. Although the zero harmonic is seldom mentioned, it definitely plays an
important physical role. Just to cite one example, it is this harmonic that allows
explaining the thermal expansion of solid materials linear in T or A2 ∝ kbT
implying u0 ∝ T .[4]

FIGURE 17 – Evolution of the oscillation frequency of the pen-
dulum as a function of the maximum of the rotation speed θ̇max.

By looking for a solution of the Looking for a solution in the
form of a function of the variable y = ωt and by developing to
order 1 we obtain :{

du/dy = v
ω2dv̇/dy = −2u− εu3 (23)

At order 0 :
The linear equation leading u0 = A cos(ω0t)with ω2

0 = 2
At order 1 :

We obtain : 2ω0ω1ü0 + ω2
0ü1 = −2u1 − (A3/4)(cos 3ω0t +

3 cosω0t) (with ü = d2/dy2). The parameter ω1 may be chosen
so that the component cosω0t disappear ; which avoids the pro-
blem that we had in the previous approach. The value of ω1 is
fixed to :

ω1 =
3A2

8ω0
(24)

Thus the oscillation frequency of the bead in a two well poten-
tial will first increase as the square of the oscillation amplitude.
In the case of the pendulum, the sign of the term in θ3 is dif-
ferent, and one finds ω1 = −A2/(8ω0) : its frequency decreases
with the amplitude. The perturbation approach that we have sket-
ched demonstrates the occurrence of harmonics directly related
to the non-linear terms and also the importance of the frequency
variation as a function of the amplitude. In the particular case of
Hamiltonian systems having a phase space of dimension two, it
is possible to write the expression of the oscillation period in an
integral form of the system total energy :

mq̇2

2
+ U(q) = E (25)

Leading to :

t =
√

2m

∫ qmax

qmin

dq√
E − U(q)

(26)

where qmin and qmax correspond to the extreme excursions of
the oscillation. Notice that the integral of the equation 26 is ellip-
tical. We have reproduced the typical evolution of the oscillation
frequency of the pendulum versus the maximum value of the ro-
tation speed on the figure 17.

7.3 Structure of a resonance
One convenient model of the gravity pendulum studied pre-
viously is a compass in a magnetic field. The two systems are
completely equivalent but in the second one, it is extremely easy
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FIGURE 18 – Trajectory of a compass in a magnetic field or of the
angle of a gravity pendulum in the phase space. The oscillation
domain is bounded by the separatrics which defines a resonance.

to modulate the potential by changing the magnetic field. If we
call ~M the compass magnetization, J its inertial momentum and
~B the magnetic field applied. The equation describing the system
writes : {

dθ/dt = θ̇

dθ̇/dt = −(MB/J) sin θ
(27)

If the magnetic field applied is null, B = 0, the trajectories in
phase space are simply straight lines parallel to the axis θ = 0
since θ̇ = cte.. The motion of the compass is a uniform rota-
tion in one direction or the other. Let us now observe the evo-
lution of the trajectories when we increase the magnetic field to
the value B0. As we have drawn on the figure 18, trajectories of
center type emerge around the origin and saddle points appear in
θ = ±π and θ̇ = 0. The oscillation domain is bounded by the
special trajectory which is the separatrics, already described in
the pendulum case. The trajectories of rotation at constant speed
are modified and their rotation speed is now modulated. So to
speak the magnetic field B0 as pushed the rotating trajectories
to insert a set of oscillation trajectories. This island of oscilla-
ting trajectories is called a resonance. It is easy to compute the
extension in phase space of this island : As a matter of fact, its
half-width corresponds to the maximum speed that the compass
acquire in following the separatrics, namely :

θ̇max = 2
√
MB/J (28)

The half-width of the resonance increases with the magnetic
field B. Since θ̇ is also the pulsation, it is interesting to compare
it to the small oscillation frequency : ω0 =

√
MB/J . One finds

that θ̇max = 2ω0.

8 Systems with two frequencies
We now propose to study qualitatively the transition to chaos of
simple Hamiltonian systems. We have seen that it is enough that
the phase space has four dimensions for a system to become non-
integrable. The compass in a magnetic field provides a control
parameter that we shall use to drive the system from an integrable
situation towards a non-integrable one. We shall also show that
one dimension of the phase space corresponds to a trivial beha-
vior ; thus it is possible to describe the evolution in a phase space
easier to represent by having only three dimensions.

8.1 Compass subject to two magnetic field

Let us imagine that we place a compass in a static magnetic field
B0 and that we approach this compass by a second compass so
that a coupling exists between the two. We have just built a sys-
tem having a phase space with four dimensions since we need
to use the variables θ and θ̇ to describe the first compass and φ
φ̇ for the second one. This system is non-linear and has enough
degrees of freedom to present chaotic trajectories.

FIGURE 19 – In the limit cases where one of the magnetic field is
null, the phase space corresponds to the occurrence of one reso-
nance centered on θ̇ = 0 when B1 = 0 (on the left) and centered
on θ̇ = 1 in the case B0 = 0 (on the right).

Let us now assume that the second compass is far much big-
ger and heavier than the first one : Its kinetic momentum Jφ is
far greater than the one of the first compass. As a matter of fact,
the motion of the small compass will have a limited effect on the
second, while the reverse is not true. In the limit where the ratio
of the kinetic momentum goes towards infinity, the motions of
the second compass are not altered by those of the first one. As
a result, the second compass may be viewed as evolving alone in
a two-dimensional phase space and to have a specific invariant
φ̇ = Ω. This second invariant replaces the energy one in an inter-
esting manner since it allows considering only a three-dimension
phase space : θ, θ̇ and φ. On a practical point of view, the effect of
the big compass, may be summarized as imposing a rotating ma-
gnetic field with the frequency Ω. A way to build such a system,
consists in placing a compass simultaneously in a static field B0

and in a rotating one B1. If we writeM the magnetization of the
compass and J its kinetic momentum, the equations governing
the system take the form : dθ/dt = θ̇

dθ̇/dt = −MB0

J sin θ − MB1

J sin(θ − φ)
dφ/dt = Ω

(29)

It is worth noting that if we shut down the static field kee-
ping only the rotating on ( B0 = 0 and B1 6= 0), we recover
the problem of a compass in a static field (that is the one of the
gravity pendulum) after performing a change of referential by
placing ourselves in a rotating space θ1 = θ − Ωt having the
same rotation speed as the magnetic field. In this new referential
the rotating field appears static and it leads to the occurrence of
a resonance which is just shifted along the axis θ̇ by the quantity
Ω. If the two fields are non zero, each field leads to a resonance :
this system is called a two resonances system.

8.2 Stochasticity criterion

In the case of this compass, a resonance corresponds to a domain
in phase space where the oscillation motions occur around one
of the fields. A resonance may be viewed as a capturing zone.
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Thus, it is impossible for a trajectory to belong to both reso-
nances simultaneously, this would mean that the motion of the
compass arises as an oscillation around the static field and also
around the rotating one ! As the size of the resonance increases
with the strength of the associated field, it is clear that if we in-
crease the strength of the field a problem will arise when the two
resonance start to overlap. In this situation, the compass does not
know which field to follow, and it generally adopts a chaotic be-
havior, following alternatively each field in a random manner.
On the contrary, one imagines that when the field amplitude is
small, the compass motion will be regular. This simplistic reaso-
ning allows obtaining a rudimentary criterion to predict the oc-
currence of chaotic behaviors : the overlapping of the resonance
takes place when the sum of the half-widths of the resonances
equals the distance separating them. This is the Stochasticity cri-
terion.

S =
2
√
MB0/J + 2

√
MB1/J

Ω
=

2(ω0 + ω1)

Ω
(30)

where ω0 and ω1 are respectively the small amplitude oscillation
frequencies of the compass in the fixed and the rotating field res-
pectively. We see that the resonance overlap occurs when S = 1,
which happens either when we increase the field amplitudes or
when the frequency of the rotating field decreases Ω. This crite-
rion can apply to different systems, where there exists resonances
separated along the θ̇.

9 POINCARÉ section
Until now, we have been careful not to try representing the three-
dimensional phase space of the compass. We have also used
for these systems the resonance concept introduce for the phase
space of systems having two dimensions, without justifying the
validity of the approach for chaotic trajectories. In fact, by intro-
ducing a more appropriate representation of the phase space, we
will see that the resonances globally exist in the compass system
but that they are suffering some important perturbations.

9.1 Trajectories stroboscopy
The compass may be seen as a system perturbed by a signal at
frequency Ω. One classical way to check that the compass oscil-
lates or turns regularly with this frequency, consists in observing
it with a stroboscope. That is to say, to observe its position and
speed at periodic time corresponding to tn = n2π/Ω. This is
equivalent as performing a section of the trajectory of the com-
pass in a plane φ = cte. Instead of observing a continuous trajec-
tory, we now have a series of intersection points in the plane θ, θ̇ :
This is a POINCARÉ section (we have used the periodicity of φ
to collapse the trajectory in the interval [0, 2π]). The POINCARÉ
section is a very useful tool allowing to reduce the phase space
dimension by one.

In the case of the compass, we bring back the study to the plane
θ, θ̇, similar to the one used for the gravity pendulum. However
now, the trajectory is not anymore a continuous curve, but a series
of discrete points (in principle one should index them according
to their apparition number but this is seldom done).

9.2 POINCARÉ section
Although the trajectory of a given dynamical system does not

always present a specific periodicity imposed externally, it is al-
ways possible to realize a POINCARÉ section as the ensemble

FIGURE 20 – Principle of a POINCARÉ section of the compass.

of the intersection points of this trajectory why a given plane of
the phase space. One only keeps the points intersecting the plane
with a given direction. The time separating two intersections is
then not anymore constant. A POINCARÉ section reduces the in-
formation contained by the complete trajectory, it might even be
that it does not represent the entire dynamics. To grasp a realis-
tic view of the system, it might be necessary to vary the section
plane (either the phase of the stroboscopy or its direction).

9.3 Typical POINCARÉ section of the compass
To illustrate this concept, let us observe the section shown in the
figure 21, done at φ = 0, with equal magnitude of both magnetic
field, and at S = 1/2.

FIGURE 21 – Compass POINCARÉ section at S = 1/2. By va-
rying the initial conditions, it is possible to distinguish different
regions of the phase space, in particular the resonances.

For some peculiar initial conditions, the point series align
along well-defined curves. One recover the two resonances and
the rotation trajectories.

10 Passing trajectories
We are going to describe the evolution of the rotation trajecto-
ries located in between the two principal resonances. It is easy to
imagine that passing trajectories are not much impacted by the
resonances as long as S << 1, but what occurs when S comes
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close to 1 ? This picture is qualitatively correct, however, the tra-
jectory is altered by the occurrence of frequency lock-ins leading
to a special structure of the phase space. We will try to compute

FIGURE 22 – Analysis of the passing trajectories. At the top Poin-
cacé section, one notices that the trajectory is dense. At the bot-
tom, power spectrum of the angular velocity of the compass.

these trajectories using a form developed in ε as we have done
already. We assume that B0 and B1 to be proportional to ε (and
thus small). We seek to solve :

θ̈ = −εM sin θ − εP sin(θ − Ωt) (31)

Where M = MB0/J and P = MB1/J . We are looking for a
solution having the form :

θ(t) = θ0(t) + εθ1(t) + ε2θ2(t) + · · · (32)

At order 0 : we need to solve : θ̈0 = 0, leading to :

θ0(t) = φ+ ωt+ · · ·

This is a trajectory with a constant rotating speed ω ; the phase
term φ corresponds to the multiple possibilities of the phase va-
lue. At order 1 : we need to solve :

θ̈1 = −M sin(φ+ ωt)− P sin (φ+ (ω − Ω)t)

We obtain :

θ1(t) =
M

ω2
sin(θ0(t)) +

P

ω′2
sin(θ′0(t))

Where θ′0(t) = (φ+ (ω − Ω)t). While rotating, the compass
« feels » the fixed field as a periodic perturbation at frequency
ω. Its rotation speed is modulated by this frequency. In a similar
fashion, the rotating field also imposes a periodic modulation at
frequency ω′ = ω−Ω. These two perturbations can be seen in the
power spectrum of the compass which now contains two peaks at
the frequencies : ω and ω′.

At order 2 : we need to solve :

θ̈ = −εM sin (θ0(t) + εθ1(t))− εP sin (θ′0(t) + εθ1(t))

By expanding the sinus and keeping the terms in ε2 we get :

θ̈2 = −M cos θ0

[
M

ω2
sin θ0 +

P

ω′2
sin θ′0

]
−M cos θ′0

[
M

ω2
sin θ0 +

P

ω′2
sin θ′0

]
The term cos θ0 sin θ0 leads to a perturbation in sin(2φ + 2ωt)
this is the second harmonic at 2ω ; In a similar fashion the term
cos θ′0 sin θ′0 leads to the second harmonics of 2ω′. The mixed
terms cos θ0 sin θ′0 et cos θ′0 sin θ0 lead to terms θ0 ± θ′0 and
θ′0± θ0 which correspond to perturbations at frequencies ω±ω′
and ω′ ± ω. In general we can determine the expression of θ2

and pursue the expansion to higher order. However, in the case
where ω = Ω/2 = −ω′, we have to solve the equation : θ̈2 ∼
− sin(2φ). Which again lead to a term growing like t2 which
does not become small contrary to our assumption made at the
beginning of this calculation in 32. In the case where ω = Ω/2
we have a frequency lock-in.

10.1 Frequency lock-in 1/2
When two oscillators interfere they usually lock-in phase, it

is easy to understand that the small phase difference matters. In
the 1/2 lock-in example, we have just shown that the compass is
under the influence of a perturbation at sin(2φ). To correctly des-
cribe this lock-in one needs to start again the perturbation com-
putation, but this time in allowing the frequency ω to evolve as
we had done in 7.2. More precisely, as a frequency modulation is
just a phase modulation, we are going to assume that φ varies in
time. We shall look for a solution under the form :

θ =
Ω

2
t+ φ(t) + · · ·

We shall analyze the corresponding motion associated to this
lock-in in a particular case. We choose M = P , the equation
31 becomes :

φ̈ = −2εM sinφ cos(Ωt/2)

Let us notice that in this situation, the point corresponding to à
φ = 0 and θ̇ = Ω/2 is a fixed point as well as the point corres-
ponding to φ = π. To appreciate the solution, we shall assume
that the phase φ is small and close to 0 but can oscillate slowly
around that fixed point :

φ = exp(εω0t)[u0(t) + εu1(t) + ε2u2(t) + · · ·]

At order 0 : one obtains : ü0 = 0
At order 1 : we need to solve :

ü1 − iω0u̇0 = −2Mu0 cos

(
Ωt

2

)
(33)

This leads to :

u̇0 = 0 et u1 =
8M

Ω2
u0 cos

(
Ωt

2

)
At order 2 : we need to solve :

ü2 − iω0u̇1 − ω2
0u0 = −2Mu1 cos

(
Ω

2
t

)
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By replacing u1 by its expression 33, we separately solve the
terms that explicitly depend on time, those in cos(Ωt) and those
in cos(Ω/2t). This allows to find the expression of ω0 :

ω2
0 =

8M2

Ω2

Thus we see that the oscillation frequency of the phase is well-
defined and is equal to εω0. Near the fixed points θ = 0, θ̇ = 1/2
et θ = ±π, θ̇ = 1/2, we observe a phase oscillation that cor-
responds to the elliptical trajectories visible in the figure 21. The
equations in cos(Ωt) and cos(Ω/2t) allow describing the expres-
sion of u2 :

u21 = iω0
16M

Ω3
u0 cos

(
Ωt

2

)
u22 = −u0

32M2

Ω4
cos(Ωt)

(34)

10.2 The spectrum of the rotation motion
We can generalize the results of the expansion in ε by considering
the frequency spectrum of the rotation speed of the compass : As
long as the periodic perturbations do not have a zero frequency,
the higher orders in ε lead to frequencies like pω ± qω′ with p
and q ∈ Z . This is a complex spectrum but all the peaks are in
fact frequency combinations of ω and ω′ that defines the rotation
number σ = ω/ω′.

10.3 Rational rotation number
Each time this rotation number σ is a rational equal to p/q, the
ε expansion is singular : A frequency lock-in appears. The ro-
tation trajectory then breaks to a series of q small resonances,
these q resonances lead to the occurrence of q center points as
well as q saddle points. One can observe an example of this be-
havior in figure 21. Upon the frequency lock-in occurrence, one
might think that that the two starting frequencies ω and ω′ by
combining in a rational manner will lead to a system with only
a single remaining frequency. But as we have seen for the 1/2
lock-in, the phase oscillation brings in a new frequency εω0 lea-
ding again to a two frequencies system. This new frequency may
again present a commensurate relation with the fundamental fre-
quency, a lock-in and the birth of a new frequency. In general, the
system still present two frequencies. The amplitude of the series
of resonances occurring upon such a lock-in, is stronger if the
rationale is simple, that is if q is small. At equal distance from
the fundamental resonances, one observes a series of resonance
corresponding to the lock-in 1/2. Those of the 1/3 lock-in are
weaker and so on.

10.4 K.A.M. torus
If the ratio σ = ω/(Ω − ω) is an irrational number, the lock-in
mechanism seen previously, does not occur and the expansion ε
in can be constructed. However, it is possible that this expansion
does not converge. The trajectory remains as long as the pertur-
bation related by to resonances are not too strong. While intro-
ducing the stochasticity criterion, S we have shown how the fun-
damental resonances could perturb the passing trajectories. The
occurrence of the series of secondary resonances will also des-
tabilize the irrational nearby trajectories. In other words, some
trajectories will remain regular even though the system is non-
integrable. This proposition constitutes the theorem Kolmogo-
rov Arnold and Moser (K.A.M.). Its demonstration was a master

piece of Mathematics from these three authors. Its implication
is capital since it allows stating that some passing trajectories
located in between two fundamental resonances will remain ri-
gorously regular until a finite threshold in stochastic parameters
will be reached. This type of trajectory corresponds to a series
of points forming a well-defined curve as in figure 21. This theo-
rem allows justifying the expansion in ε that we have sketched. In
principle, it allows specifying the ε parameter domain for regular
trajectories.

11 Trajectories inside a resonance

FIGURE 23 – POINCARÉ section of the compass at S = .9. One
notices the occurrence of five islands corresponding to a lock-in
1/5.

We have just seen that the ratio σ of the two frequencies charac-
terizing a passing trajectory, determines its stability, at least for
weak stochasticity parameter values. As this ratio changes conti-
nuously when the angular speed increases, near the resonance
center this ratio is maximum at Ω and decreases towards 0 as the
amplitude of the oscillation increases towards the resonance se-
paratrics. During that evolution, the ratio will alternate between
rational and irrational leading to a very complex structure. Let us
examine this situation around the mean strongest lock-in. Let us
consider the case of the resonance associated with the fixed field.
At first order, the compass oscillates around the fix field with a
frequency ω. This oscillation suffers the perturbation of the ro-
tating field that induces a second oscillation at frequency Ω. We
are facing a two frequencies system, equivalent to the case of the
passing trajectory that we have just studied. In a similar manner,
the stability of the trajectories will depend of the rational charac-
ter of the ratio σ = ω/Ω.

11.1 Secondary resonances

This is at this stage that the non-linear behavior of the compass
oscillation takes all its importance. As shown in the figure 17,
the frequency evolves continuously from the small oscillation
frequency ωI towards 0. The situation is comparable to that of
the passing trajectories. However, the linear oscillation area is
singular owing to the second order variation of the frequency ω
with ω ≈ ωl. One observes a mixture of lock-ins and regular
trajectories associated with KAM tori. The lock-ins lead to oc-
currence of series of periodic islands as those of the figure 23.
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FIGURE 24 – POINCARÉ section of the compass at S = 1.30.
Lock-in 1/3, notice that the saddle points and the center points
are not anymore aligned with an ellipse.

In this domain where the oscillations are nearly linear, the am-
plitude of the harmonics is small and the lock-in are very weak.
On the other hand, as we go away from the resonance center, the
lock-in increase in strength and secondary islands becomes lar-
ger. The various lock-ins have their frequency ratio ω/Ω bounded
by ωl/Ω =

√
MB0/J/Ω. One notices that upon increasing the

strength of the fix field B0, the lock-in islands p/q expand in the
resonance. Thus, the increase of the frequency ωl is compensated
by the decrease of the oscillation frequency with its amplitude.
As the lock-ins are stronger when the rational is smaller, the per-
turbation that they bring is small when ωl/Ω << 1 but becomes
strong when ωl/Ω comes close to 1/3 and 1/2. Le separatrics of
the resonance corresponds to a trajectory that is extremely sensi-
tive to all perturbations (this is the case of the pendulum upside
down). This is also in the vicinity of these trajectories that the
oscillation frequency varies the most rapidly and vanishes. This
area is the first region in phase space to become chaotic upon
increasing S, as one can see on the figure 21.

11.2 Resonance hierarchy
As said above, the lock-ins associated to small rational p/q are
stronger, let us estimate the values of S where these lock-ins oc-
cur. Using the same amplitude of the fix and oscillating field then
ωl/Ω = S/4. Thus to reach the lock-in 1/3 one needs to set
S = 4/3 (2 for the lock-in 1/2). These values are well above the
threshold value where the primary resonances overlap that is in a
domain where chaos affects most of the trajectories and only the
heart of the lock-in are not chaotic yet. The lock-in 1/3 shows the
first peculiarity : the three islands emerge at finite distance from
the heart of the main resonance, contrary to what we observe for
the lock-ins 1/5 or 1/4, for instance. Moreover the island struc-
ture is different from that of the other lock-ins (see fig. 24). The
lock-in 1/2 is even more special : while the other lock-in leave
the heart of the resonance unchanged, the 1/2 lock-in breaks the
resonance in two. The mid-point that is the resonance heart be-
comes a saddle points joining the two center islands as in the
figure 25.

11.3 Resonance break-up by period doubling
The scenario that we have just described repeating itself for the
secondary resonance. At their heart, when the two frequencies
are commensurate : a new lock-in appears corresponding to a
synchronization of the oscillation motions. The same phase oscil-
lation is observed. New series of islands appear in the secondary

FIGURE 25 – Compass POINCARÉ section at S = 1.70. Lock-in
1/2, notice how the lock-in breaks the main resonance in two.
Nine small islands now decorate the two secondary resonances,
they correspond to a lock-in 4/9.

islands. The frequency ratio σ1 between the phase oscillation and
the main frequency increases with the strength of S until the se-
condary resonance breaks up leading to a third generation and so
on. This cascade of events is in fact a cascade of period doubling.

As we can infer, the phase space resonance structure is hierar-
chical : one resonance contains secondary resonances that again
contain smaller resonances and so forth. The phase space is said
to have a self-similar structure.

12 Large scale stochasticity

The scenario that we have sketched is valid at all values of S. A
proliferation of resonances is observed, but they do not lead auto-
matically to chaos. Their number but also their strength increase
with S. By opening more and more islands, there is less and less
available space for regular KAM trajectories. Their shape be-
comes more and mode perturb and they are finally tearing apart.
One way to quantify this fact is to consider the lock-in at the
different hierarchical levels. If we consider only passing trajec-
tories, the two primary resonances constitute the first generation.
Imagine that we evaluate the trajectory corresponding to the irra-
tional number σ, daughter resonances will appear on each side of
this trajectory. One can iterate the process by considering these
secondary resonances as a new base and iterate the process. As
we go on, the strength of the secondary resonances will either
increase or decrease with the iteration order. If they decease, the
trajectory will appear smooth at small scale, they are regular. If
they increase, the trajectory perturbation grows at each scale lea-
ding to a break-up of the trajectory and to a chaotic behavior.
This phenomenon corresponds to the breaking of KAM tori.

12.1 Phase space appearance

The local study that we have just sketched allows describing the
general shape of the phase space : an intricate structure of lock-
ins of regular trajectories near their heart and of chaotic trajec-
tories at their separatrics. The amplification mechanism of reso-
nances and the KAM torus destruction leads to extension of chao-
tic domains. Let us also notice that regular trajectories are clearly
separated in phase space while chaotic trajectories are entangled
and form a sea of stochasticity as long as they are not separated
by a regular trajectory that constitutes a leakproof boundary.
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12.2 Disappearance of the last KAM torus

Thus as long as a KAM torus remains between the two major
resonances of the compass, the chaotic trajectories that have soon
appeared in close to the separatrics, are not connected and remain
bound close to their lock-ins. When the last torus is teared apart,
the chaos that emerges is said of wide scale. For the compass one
can then observe that the chaotic behavior explore the fixed field
resonance as well as the rotating one. The compass makes a few
oscillations around the fixed field and then starts rotating with the
rotating field, jumping from one to the other in an erratic manner.

13 Viscous drag effects

Energy dissipation terms are very difficult to avoid for a real sys-
tem, what is their effect on the chaotic behaviors that we have
described so far ? Viscous drag will lead to the decrease of the
amplitude of the oscillation of the pendulum bringing its repre-
sentative point to the origin of the phase space. Thus dissipative
terms will at least restrict the range of initial conditions selecting
a small number of them close to the center points corresponding
to the minimum of energy. Thus, dissipative terms may be vie-
wed as a simplification compared with Hamiltonian systems for
which each initial condition determines a specific trajectory.

FIGURE 26 – Damped oscillator trajectories. The area contrac-
ting in phase space leads all initial conditions to the origin..

13.1 The damped oscillator

Let us illustrate the phenomenon for a linear system where we
are able to exactly compute the effect : the damped harmonic
oscillator.

mẍ+ γẋ+ kx = 0 .

The solutions take the form :

x0(t) = xt=0 exp

(
−γt
2m

)
cos

(√
4km− γ2

2m
t+ φ

)

When 4km > γ2, the trajectory spirals towards the origin of
the phase space. If 4km < γ2, the trajectory does not oscillate
anymore but converges rapidly towards the origin (overdamped
oscillator).

13.2 Area contracting in phase space

In general, for dissipative systems without external energy sup-
ply, all points of phase space converge to the origin. All volu-
metric elements of the phase space are contracting to one point
during this evolution.

13.3 Strange attractor and fractal dimension
Deterministic Chaos survives dissipation, once established it

signature consists in a special form in phase space called strange
attractor. An example is given in the figure 27. This corresponds
to the POINCARÉ section of a particle in a two well potential
subjected to a periodic excitation.

FIGURE 27 – Strange attractor obtained with an electronic cir-
cuit mimicking a particle in a double well potential excited by a
sinusoidal perturbation.

The attractor name comes from the fact that the object attracts
the trajectories in phase space. If we impose two different initial
conditions, we obtain two trajectories leading to the same figures
with the same strange shape but with different point patterns.
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