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DIRECT OBSERVATION OF FIELD QUANTIZATION

Reference : M.Brune, F.Schmidt-Kaler, A.Maali, J.Dreyer, E.Hagley, J-M.Raimond
and S.Haroche : Phys.Rev.Lett. 76, 1800 (1996)

We consider here a two-level atom interacting with a single mode of the
electromagnetic field. When this mode is treated quantum mechanically, specific features
occur in the atomic dynamics, such as damping and revivals of the Rabi oscillations.

1. Quantization of a Mode of the Electromagnetic Field
We recall that in classical mechanic, a harmonic oscillator of mass m and frequency

ω
π2

 obeys the equation of motion 
2

dx p
dt m
dp m x
dt

ω

 =

 = −


where x  is the position and p the momentum

of the oscillator. Defining the reduced variables 
X t x t m

P t
p t
m

b g b g

b g b g
=

=

R
S
||

T
||

ω

ω

=

=

, the equations of motion

of the oscillator are 

dX
dt

P

dP
dt

X

=

= −

R
S||

T||

ω

ω
(1)  and the total energy U tb g is given by :

U t X t P tb g b g b g= +
=ω
2

2 2 (2)

1.1. Consider a cavity for electromagnetic waves, of volume V . Throughout this problem,
we consider a single mode of the electromagnetic field, of the formG G G G G GE r t u e t kz B r t u b t kzx y, sin , cosb g b g b g b g= =
where G G Gu u ux y z,  and  are an orthogonal basis. We recall Maxwell’s equations in vacuum :

∇ = ∇∧ = −

∇ = ∇∧ =

R
S
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T
||

. , ,
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. , ,
,

G G G G
G G

G G G G
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t

B r t B r t
c

E r t
t

b g b g b g

b g b g b g
0

0 1
2

∂
∂

∂
∂

and the total energy U tb g of the field in the cavity :

U t d r E r t B r t c
V

b g b g b g= +
F
HG

I
KJ =z 3 0 2

0

2
0 0

2

2
1

2
1ε

µ
ε µ

G G, , with (3)

a) Express de
dt

db
dt

 and  in terms of  k c e t b t, , ,b g b g.
b) Express U tb g in terms of V e t b t, , , ,b g b g ε µ0 0. On can take sin cos2 3 2 3

2
z d r z d r V

V V
z z= = .

c) Setting ω = kc  and introducing the reduced variables
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χ ε
ω µ ω

t V e t t V b tb g b g b g b g= =0

02 2= =
Π

show that the equations for d
dt

d
dt

U tχ , Π  and b g  in terms of χ ω,Π and  are formally identical

to equations (1) and (2).
1.2. The quantization of the mode of the electromagnetic field under consideration is
performed in the same way as that of an ordinary harmonic oscillator. One associates to the
physical quantities χ and Π , Hermitic operators � �χ and Π  which satisfy the commutation
relation

� , �χ Π = i
The Hamiltonian of the field in the cavity is

( )2 2ˆ ˆˆ
2CH ω χ= +Π
=

The energy of the field is quantified : E nn = +FHG
I
KJ

1
2
=ω  (n  is a non-negative integer) ; one

denotes by n  the eigenstate of ˆ
CH  with eigenvalue En .

The quantum states of the field in the cavity are linear combinations of the set nm r. The state

0 , of energy E0 2
=
=ω  is called the « vacuum », and the state n  of energy E E nn = +0 =ω  is

called the « n  photon state ». A « photon » corresponds to an elementary excitation of the
field, of energy =ω . One introduces the « creation » and « annihilation » operators of a
photon as

( ) ( )† 1 1ˆ ˆˆ ˆ ˆ ˆ and 
2 2

a i a iχ χ= − Π = + Π

respectively. These operators satisfy the usual relations :
† 1 1

ˆ ˆ1 if 0 and 0 0

a n n n

a n n n n a

 = + +


= − ≠ =
a) Express ˆ

CH  in terms of †ˆ ˆ and a a . The observable †ˆ ˆ ˆN a a=  is called the « number of
photon ».
The observables corresponding to the electric and magnetic fields at a point Gr  are defined as :

( ) ( )

( ) ( )

†

0

†0

ˆ ˆ sin

ˆ ˆ cos

x

y

E r u a a kz
V

B r iu a a kz
V

ω
ε

µ ω


= +



 = −

=G G

=G G

The interpretation of the theory in terms of states and observables is the same as in ordinary
quantum mechanics.
b) Calculate the expectation value 

G G G GE r B r n H nCb g b g,  and  in an n-photon state.

1.3. The following superposition :

α αα

=
−

=

∞

∑e
n

n
n

n

2

2

0 !
 (4)

where α  is any complex number, is called « quasi-classical » state of the field.
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a) Show that α  is a normalized eigenvector of the annihilation operator a  and give the
corresponding eigenvalue. Calculate the expectation value n  of the number of photons in
that state.
b) Show that if, at time t = 0, the state of the field is Ψ 0b g = α , then, at time t

Ψ t e e
i t

i tb g = − −
ω

ωα2

c) Calculate the expectation value 
G G G GE r B r

t t
b g b g and  at time t in a quasi-classical state for

which α  is real.
d) Check that 

G G G GE r B r
t t
b g b g and  satisfy Maxwell’s equations.

e) Calculate the energy of a classical field such that 
G G G G G G G GE r t E r B r t B rcl t cl t

, ,b g b g b g b g= = and .

Compare the result with the expectation value of ˆ
CH  in the same quasi-classical state.

f) Why do these results justify the name « quasi-classical » state for α  if α >>1 ?

2. The Coupling of the Field with an Atom
Consider an atom at point Gr0  in the cavity. The motion of the center of mass of the

atom in space is treated classically. Hereafter we restrict ourselves to the two-dimensional
subspace of internal atomic states generated by the ground state f  and an excited state e .
The origin of atomic energies is chosen in such a way that the energy of f  and e  are

respectively − + >
= =ω ω ωA A

A2 2
0 and b g. In the basis f e,m r, one can introduce the

operators :
1 0 0 0 0 1

ˆ ˆ ˆ
0 1 1 0 0 0zσ σ σ+ −

     
= = =     −     

that is to say ˆ ˆ and f e e fσ σ+ −= = ,  and the atomic Hamiltonian can be written as :

ˆ ˆ
2

A
A zH ω σ=
=

The set of orthonormal states f n e n n, , , , ≥ 0m r where f n f n e n e n, ,≡ ⊗ ≡ ⊗ and 
forms a basis of the Hilbert space of the atom + photonsl q states.
2.1. Check that it is an eigenbasis of 0

ˆ ˆ ˆ
A CH H H= + , and give the corresponding

eigenvalues.
2.2. In the remaining parts of the problem we assume that the frequency of the cavity is
exactly tuned to the Bohr frequency of the atom, i.e. ω ω= A . Draw schematically the
positions of the first 5 energy levels of 0Ĥ . Show that, except for the ground state, the

eigenstates of 0Ĥ  are grouped in degenerate pairs.
2.3. The Hamiltonian of the electric dipole coupling between the atom and the field can be
written as :

( )†ˆ ˆ ˆ ˆ ˆW a aγ σ σ+ −= +

where γ ω
ε

= −d
V

kz=
0

0sin , and where the electric dipole moment d  is determined

experimentally.
a) Write the action of W  on the states f n e n, , and .
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b) To which physical processes do †ˆ ˆ ˆ ˆ and a aσ σ+ −  correspond ?

2.4. Determine the eigenstates of 0
ˆ ˆ ˆH H W= +  and the corresponding energies. Show that

the problem reduces the diagonalisation of a set of 2x2 matrices. One hereafter sets :

Φ

Ω
Ω Ω

n

n

f n e n

d
V

kz n

± = + ±

= = − = +

1
2

1

2
10

0
0 0

, ,

sin

c h
= =γ ω

ε
The energies corresponding to eigenstates Φn

±  are denoted En
± ..

3. Interaction of the Atom and an « Empty » Cavity
In the following one assumes that the atom crosses the cavity along a line where

sin kz0 1= .
An atom in the excited state e  is sent into the cavity prepared in the vacuum state 0 .

At time t = 0, when the atom enters the cavity, the state of the system is e n, = 0 .
3.1. What is the state of the system at a later time t  ?
3.2. What is the probability P Tf b g of finding the atom in the state f  at time T  when the
atom leaves the cavity ? Show that P Tf b g is a periodic function of T  (T  is varied by changing
the velocity of the atom).
3.3. The experiment has been performed on rubidium atoms for a couple of states f e,b g  such

that d = × = ×−11 10
2

5 0 1026 10, ,C.m and Hzω
π

. The volume of the cavity is V = × −1 87 10 6, m3

(we recall that ε
π0 9

1
36 10

=
×

SI). The curve P Tf b g, together with the real part of its Fourier

transform J T P T dTfν πνb g b g b g=
∞z cos 2
0

, are shown in Fig.1. One observes a damped

oscillation, the damping being due to imperfections in the experimental setup.
How do theory and experiment compare ?
 (We recall that the Fourier transform of  a damped sinusoid in time exhibits a peak at the frequency of this
sinusoid, whose width is proportional to the inverse of the characteristic damping time.)

Fig.1 (a) Probability P Tf b g of detecting the atom in the ground state after it crosses a cavity
containing zero photons ; (b) Fourier transform of this probability, as defined in the text.
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4. Interaction of an Atom with a Quasi-Classical State
The atom, initially in the state e , is now sent into a cavity where a quasi-classical

state α  of the field has been prepared. At time t = 0 the atom enters the cavity and the state
of the system is e ⊗ α .
4.1. Calculate the probability P T nf ,b g  of finding, at time T , the atom in the state f  and the
field in the state n +1 , for n ≥ 0. What is the probability of finding the atom in the state f
and the field in the state 0  ?
4.2. Write the probability P Tf b g of finding the atom in the state f , independently of the
state of the field, as an infinite sum of oscillating functions.
4.3. On Fig.2 are plotted an experimental measurement of P Tf b g and the real part of its
Fourier transform J νb g. The cavity used for this measurement is the same as Fig.1, but the
field has been prepared in a quasi-classical state before the atom is sent in.

Fig.2 a) Probability P Tf b g of measuring the atom in the ground state after the atom is passed
through a cavity containing a quasi-classical State of the electromagnetic field ; b) Fourier
transform of this probability.

a) Determine the three frequencies ν ν ν0 1 3, ,  which contribute most strongly to P Tf b g.
b) Do the ratio ν

ν
ν
ν

1

0

2

0

 and  have the expected values ?

c) From the values J Jν ν0 1b g b g and , determine an approximate value for the mean number of
photon α 2  in the cavity.

5. Large Numbers of Photons : Damping and Revivals
Consider a quasi-classical state α  of the field corresponding to a large mean number of
photons : α 2

0 1≈ >>n , where n0 is an integer. In this case, the probability π nb g  of finding n
photons can be cast, in good approximation, in the form :

π
α

π
αn e

n n
n n

n

n

b g b g
= ≈ −

−L
N
MM

O
Q
PP

− 2
2

0

0
2

0

1
2 2!

exp

This gaussian limit of the Poisson distribution can be observed by using the Stirling formula
n n e nn n!≈ − 2π  and expanding  lnπ nb g  in the vicinity of n n= 0.
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5.1. Show that this probability takes significant values only if n  is in a neighborhood

δ n n of 0 . Give the relative value  δ n
n0

.

5.2. For such a quasi-classical state, one tries to evaluate the probability P Tf b g of detecting
the atom in the state f  after its interaction with the field. In order to do this,
•  one linearizes the dependence of Ωn  on n  in the vicinity of n0 :

Ω Ω Ωn n
n n

n
≈ +

−
+0 0
0

02 1
(5)

•  one replaces the discrete summation in P Tf b g by an integral.
a) Show that, under these approximations, P Tf b g is an oscillating function of T  for short
times, but that this oscillations is damped away after a characteristic time TD . Give the value
of  TD .

We recall that : 
1
2

0
2

2

2 2

2 2
0σ π

α ασ
α σ

e x dx e x
x x

−
−

−∞

∞
−z =

b g
b g b gcos cos

b) Does this damping time depend on the mean value of the number of photon n0 ?
c) Give a qualitative explanation for this damping.
5.3. If one keeps the expression of P Tf b g as a discrete sum, an exact numerical calculation
shows that one expects a revival of the oscillations of P Tf b g for certain times TR  large
compared to TD , as shown in Fig.3. This phenomenon is called quantum revival and it
currently studied experimentally.
Keeping the discrete sum but using the approximation (5), can you explain the revival
qualitatively ? How does the time of the first revival depend on n0 ?

Fig.3. Exact theoretical calculation of P Tf b g for n ≈ 25 photons.
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olutions
1.
1.1. a)  The pair of Maxwell equations . 0 and . 0E B∇ = ∇ =

G G
are satisfied whatever the

values of the functions ( ) ( ) and e t b t . The equations 2 and B EE c B
t t

∂ ∂
∇∧ = − ∇∧ = −

∂ ∂

G GG G

require that :

( ) ( )2de dbc kb t ke t
dt dt

= = −

b) The electromagnetic energy can be written as :

( ) ( ) ( ) ( ) ( )2 2 2 2 3 2 20 0

0 0

1sin cos
2 2 4 2V

V VU t e t kz b t kz d r e t b tε ε
µ µ

 
= + = + 

 
∫

c) Under the change of functions suggested in the text, we obtain :

( ) ( ) ( )( )2 2

2
U t t t

χ ω ω χ
ωχ

= Π
= +Π

Π = −

� =
�

These two equations are formally identical to the equations of motion of a particle in a
harmonic oscillator potential.
1.2. a) From ˆˆ , iχ Π =  we deduce that :

† 1 ˆ ˆˆ ˆ ˆ ˆ, , 1
2

a a i iχ χ   = + Π − Π =   

In addition, 
† †ˆ ˆ ˆ ˆˆˆ and 

2 2
a a a aiχ + −

= Π =  i.e. : ( )† † † 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2CH aa a a a aω ω  = + = + 

 
= =  or

1ˆ ˆ
2CH Nω  = + 

 
=

b) For an n  photon state, we find †ˆ ˆ 0n a n n a n= = , which results in

( ) ( ) 0E r B r= =
G GG G

The state n  is an eigenstate of CH with eigenvalue 1
2

n ω + 
 

= , i.e.

1ˆ
2CH n ω = + 

 
=

1.3. a) The action of â on α gives

( )

2

2

2

1

1
2

1

ˆ 1
!

        1
1 !

n

n

n

n

a e n n
n

e n
n

α

α

αα

αα α α

∞−

=

−∞−

=

= −

= − =
−

∑

∑

The vector α  is normalized

S
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( )2

0
1

!

n n

n
e

n
α α α

α α
∗∞

−

=

= =∑
The expectation value of the number of photons in that state is :

2 2†ˆ ˆ ˆ ˆn N a a aα α α α α α= = = =

b) The time evolution of ( )tΨ is given by

( )

( )

( )

2

2

1
22

0

2 2

0

2

!

          
!

          

n i t n t

n
ni ti t

n
i t

i t

t e e n
n

e
e e n

n

e e

α ω

ωαω

ω
ω

α

α

α

 ∞ − +−  
 

=

−∞− −

=

− −

Ψ =

=

=

∑

∑

c) The expectation values of the electric and magnetic fields are

( )

( )

0

0

2 cos sin

2 sin cos

xt

yt

E r t kz u
V

B r t kz u
V

ωα ω
ε

ωµα ω

=

= −

G =G G

G =G G

d) These fields are the same type as the classical fields considered of the beginning of the
problem, with

( ) ( ) 0

0

2 cos 2 sine t t b t t
V V

ωµωα ω α ω
ε

= −
==

Given the relation 2
0 0 1cε µ = , we verify that ( ) ( ) ( ) ( )2  and e t c kb t b t ke t= = −�� . Therefore the

expectation values of the field operators satisfy Maxwell's equations.
e) The energy of the classical field can be calculated using the results of question 1. Since

2 2cos sin 1t tω ω+ = , we find ( ) 2U t ωα= = . This "classical" energy is therefore time-
independent. The expectation value of CH is :

21 1ˆ ˆ
2 2CH Nω ω α   = + = +   

   
= =

It is also time-independent (Ehrenfest's theorem)

f) For α  much larger than 1, the ratio ( )
ˆ

C

U t

H
 is close to 1. More generally, the expectation

value of a physical quantity as calculated for a quantum field in the state α , will be close to

the value calculated for a classical field such that ( ) ( ) ( ) ( ),  and ,Cl Clt t
E r t E r B r t B r= =
G G G GG G G G .

2.
2.1. One checks that

0

0

1ˆ , ,
2 2

1ˆ , ,
2 2

A

A

H f n n f n

H e n n e n

ω ω

ω ω

  = − + +    
  = + +    

= =

= =
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For a cavity which resonates at the atom's frequency, i.e. if Aω ω= , the couple of states
, 1 , ,f n e n+  are degenerate. The first five levels of 0Ĥ  are shown Fig. 4.a. Only the

ground state ,0f  of the atom+field is non-degenerate.

2.3.
a) The action of Ŵ on the basis of 0Ĥ is given by

, 1  if 1ˆ ,
0 if 0

ˆ , 1 , 1

n e n n
W f n

n

W e n n f n

γ

γ

 − ≥= 
=

= + +

Fig. 4 (a) Positions of the five first energy levels of 0Ĥ . (b) Positions of the five first energy levels

of 0
ˆ ˆ ˆH H W= + .

The coupling under consideration corresponds to an electric dipole interaction of the

form ( )ˆ .D E r−
G G G , where D̂

G
 is the observable electric dipole moment of the atom.

b) Ŵ couples the two states of each degenerate pair. The term ˆ ˆaσ+ correspond to the
absorption of a photon by the atom, which undergoes a transition from the ground
state to the excited state. The term † ˆa σ−  correspond to the emission of a photon by
the atom, which undergoes a transition from the excited state to the ground state.

2.4. The operator Ŵ is block-diagonal in the eigenbasis of 0Ĥ { }, , ,f n e n , therefore :

•The state ,0f  is an eigenstate of 0
ˆ ˆ ˆH H W= + with the eigenvalue 0.

• In each eigen-subspace of 0Ĥ generated by { }, 1 , ,  with 0f n e n n+ ≥ one must
diagonalize the 2x2 matrix

( )

( )

1
2

1
2

n

n

n

n

ω

ω

Ω + 
 

Ω + 
 

==

= =

whose eigenvectors and corresponding eigenvalues are ( )0n ≥
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( )

( )

 corresponding to 1
2

 corresponding to 1
2

n
n n

n
n n

E n

E n

ω

ω

+ +

− −

Ω
Φ = + +

Ω
Φ = + −

==

==

The first energy levels of 0
ˆ ˆ ˆH H W= + are shown in Fig.4.b.

3.
3.1. We expand the initial state on the eigenbasis of Ĥ

( )0 0 0
1,0
2

e + −Ψ = = Φ − Φ

The time evolution of the state vector is therefore given by

( ) 0 0

0 0

0 0

2 2
0 0

1
2

          
2

i iE t E t

t ti t i i

t e e

e e e
ω

+ −− −+ −

Ω Ω− − + −

 
Ψ = Φ − Φ 

 
 

= Φ − Φ 
 

= =

3.2. In general, the probability of detecting the atom in the state f , independently of the
field state is given by :

( ) ( )
2

0
,f

n
P T f n T

∞

=

= Ψ∑
In the particular case if an initially empty cavity, only the term 1n = contributes to the sum.

Using ( )0 0
1,1
2

f + −= Φ + Φ we find

( ) ( )2 0
0

1sin 1 cos
2 2f
TP T TΩ

= = − Ω

It is indeed a periodic function of T , with angular frequency 0Ω .
3.3. Experimentally, one measures an oscillation of frequency 0 47kHzν =

This result correspond to the expected value 0
0

1 2
2

d
V
ων

π ε
=

=
=

4.
4.1. Again, we expand the initial state on the eigenbasis of 0H W+

( )

( )

2

2

2

0

2

0

0 ,
!

1           
! 2

n

n

n

n n
n

e e e n
n

e
n

α

α

αα

α

∞−

=

∞− + −

=

Ψ = ⊗ =

= Φ − Φ

∑

∑
At time t the state vector is

( )
2

2

0

1
! 2

n n
i in E t E t

n n
n

t e e e
n

α α + −∞− − −+ −

=

 
Ψ == Φ − Φ 

 
∑ = =

we therefore observe that :
• the probability of finding the atom in the state f  and the field in the state

0 vanishes for all value of T
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• the probability ( ),fP T n can be obtained from the scalar product of

( )

( )

2

2 2

22

2 2
2

1,
4 !

1             sin 1 cos
! 2 2 !

n n

n i iE T E T

f

n n
n

n

P T n e e e
n

Te e T
n n

α

α α

α

α α

+ −− −−

− −

= −

Ω
= = − Ω

= =

4.2. The probability ( )fP T  is simply the sum of all probabilities ( ),fP T n  :

( ) ( )
2 2

0 0

1, cos
2 2 !

n

f f n
n n

eP T P T n T
n

α α−∞ ∞

= =

= = − Ω∑ ∑
4.3.

a) The three most prominent peaks of ( )J ν occur at the frequencies

0 47kHzν = (already found for an empty cavity), 1 265kHz and 81kHzν ν= = .
b) The ratios of the measured frequencies are very close the theoretical predictions

1

0

2ν
ν

=  and 2

0

3ν
ν

= .

c) The ratio ( )
( )

1

0

J
J
ν
ν

 is of the order of 0,9. Assuming the peaks have the same widths,

and that these widths are small compared to the splitting 1 0ν ν− , this ratio

corresponds to the average number of photons 2α in the cavity.

5.
5.1. The probability ( )nπ takes significant values only if ( )0

02
n n

n
−

is not much larger than

1,i.e. for integer values of n  in a neighborhood of 0n of relative extension of the order of

0

1
n

. For 0 1n >> , the distribution ( )nπ is therefore peaked around 0n .

5.2.
a) Consider the result of question 4.2. where we replace nΩ by its approximation (5) :

( ) ( )
0

0
0

0 0

1 1 cos
2 2 2 1f n

n

n nP T n T
n

π
∞

=

  −
= − Ω +Ω   +   

∑
We now replace the discrete sum by an integral :

( )

2

0

0

2

0
0 0

1 1 cos
2 2 2 2 1

u
n

f n
e uP T T du

n nπ

−
+∞

−∞

  
= − Ω +Ω   +   

∫
we have extended the lower integration bound from 0n− down to −∞ , using the fact that the

width of the Gaussian is 0 0n n<< . We now develop the expression to be integrated upon :

( ) ( )1 and , 1
2 n nT f n + −Ψ + = Φ + Φ
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( ) ( )0 0 0

0 0
0

0 0 0

cos cos cos sin sin
2 1 2 1 2 1n n n

uT uTu T T T
n n n

      Ω Ω
Ω +Ω = Ω − Ω           + + +       

The sine term does not contribute to the integral (odd function) and we find

( ) ( ) ( )0

2 2
0 0

0

1 1 cos exp
2 2 8 1f n

T nP T T
n

 Ω
= − Ω −  + 

For 0 1n >> , the argument of the exponential simplifies, and we obtain :

( ) ( )0

2

2

1 1 cos exp
2 2f n

D

TP T T
T

 
= − Ω − 

 

with 
0

2 2
DT =

Ω
.

b) In this approximation, the oscillations are damped out in a time DT which is independent
of the number of photons 0n . For a given atomic transition (for fixed values of  and d ω ),
this time DT increases like the square root of the volume of the cavity. In the limit of an
infinite cavity, i.e. an atom in empty space, the damping time becomes infinite : we
recover the usual Rabi oscillation. For a cavity of finite size, the number of visible
oscillations of ( )fP T is roughly 

0 0n DT nν ∼ .

c) The function ( )fP T is made up of a large number of oscillating functions with similar

frequencies. Initially, these different functions are in phase, and their sum  ( )fP T exhibits
marked oscillations. After a time DT , the various oscillations are no longer in phase with
another and the resulting oscillations of ( )fP T is damped. One can find the damping time
by simply estimating the time which the two frequencies at half width on either side of the
maximum of ( )nπ are out of phase by π :

0 0 0 0 0 0 0 0
1 and 
2D D Dn n n nT T n n n Tπ π

+ −
Ω Ω + ± ± ⇒Ω∼ � ∼

5.3. Within the approximation (5) suggested in the text, equation (6) above corresponds to a
periodic evolution of period

0
0

4 1RT nπ
= +
Ω

indeed

( ) ( )
0

0
0 0 0

0

4 1 2
2 1n R

n n T n n n
n

π π
 −
Ω +Ω = + + −  + 

We therefore expect that all the oscillating functions which contribute to ( )fP T will reset in
phase at times , 2 ,R RT T "The time of the first revival, measured in Fig.3 is 0 64TΩ � , in

excellent agreement with the prediction. Notice that 04R DT n T∼ , which means that the
revival time is always large compared to the damping time.
Actually, one can see from the result of Fig.3. that the functions are only partly in phase. This
comes from the fact that the numerical calculation has been done with the exact expression of

nΩ . In this case, the difference between two consecutive frequencies 1n n+Ω −Ω is not exactly
a constant, contrary to what happens in approximation (5) ; the function ( )fP T is not really
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periodic. After a few revivals, one obtains a complicated behavior of ( )fP T , which can be
analyzed with the techniques developed for the study of chaos.

• The experiment described in this problem have been performed in Paris at the Laboratoire
Kastler-Brossel (E.N.S.). The pair of levels ( ),f e correspond to very excited levels of
rubidium, which explains the large value of the electric dipole moment d . He field is confined
in a superconducting niobium cavity ( 8factor of 10Q − ∼ ), cooled down to 0,8K in order to
avoid perturbations to the experiment due to the thermal blackbody radiation.
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