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Quantum physics
1. Introduction to quantum physics
2. 
1.1-Black body radiation

Planck’s law for the energy distribution for the radiation of a black body is :

w h
c e

w hc

e
h
kT

hc
kT

ν π ν λ π
λν

λ

b g b g=
−

=

−

8 1

1

8 1

1

3

3 5,

Stefan-Boltzmann’s law for the total power density can be derived from this :
P A T= σ 4

Wien’s law for the maximum can also be derived from this :
T kWλ max=

1.2- The Compton effect

For the wavelength of scattered light, if light is considered to exist of particles, can be derived
:

( ) ( )' 1 cos 1 cosC
h

mc
λ λ θ λ λ θ= + − = + −

1.3- Electron diffraction

Diffraction of electrons at a crystal can be explained by assuming that particles have a wave

character with wavelength λ = h
p

. This wavelength is called the de Broglie-wavelength.

3. Wave functions

The wave character of particles is described by a wavefunction Ψ . This wavefunction can be
described in normal or momentum space. Both definitions are each others Fourier transform :

Φ Ψ Ψ Φk t
h

x t e dx x t
h

k t e dkikx ikx, , , ,b g b g b g b g= =−z z1 1and

These waves define a particle with group velocity v p
mg =  and energy E = ω .

The wave function can be interpreted as a measure for the probability P  to  find a particle
somewhere (Born) : dP d V= Ψ 2 3 . The expectation value f  of a quantity f  of a system is
given by :

f t f d V f t f d Vp pb g b g= =∗ ∗z zΨ Ψ Φ Φ3 3,

This is also written as f t fb g = Φ Φ . The normalizing condition for wave functions from
this : Φ Φ Ψ Ψ= =1.
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4. Operators in quantum physics

In quantum mechanics, classical quantities are translated into operators. These operators are
hermitian because their eigenvalues must be real :

Ψ Ψ Ψ Ψ1 2
3

2 1
3∗ ∗= zz A d V A d Vb g

When un  is the eigenfunction of the eigenvalue equation A aΨ Ψ=  for eigenvalue an , Ψ  can
be expanded into a basis of eigenfunctions : Ψ =∑c un n

n

. If this basis is taken orthonormal,

then follows for the coefficients : c un n= Ψ . If the system is in a state described by Ψ , the
chance to find eigenvalue an  when measuring A is given by cn

2  in the discrete part of the
spectrum and c dan

2  in the continuous part  of the spectrum between a a da and + . The
matrix element Aij  is given by : A u A uij i j= .

Because AB u AB u u A u u B uij i j i n n j
n

b g = = ∑  holds : u un n
n
∑ = 1.

The time-dependence of an operator is given by (Heisenberg) :
dA
dt i

A H A
t

= +
1 , ∂

∂
with A B AB BA, ≡ −  the commutator of A B and . For hermitic operators the commutator is
always complex. If A B, = 0, the operators A B and  have a common set of eigenfunctions.
By applying this to p xx  and  follows (Ehrenfest) :

m
d x

dt
dU x

dx
t

2

2 = −
b g

The first order approximation F x F x F dU
dxt

b g c h≈ = −,  with  represents the classical

equation.
Before the addition of quantum mechanical operators which are a product of other operators,

they should be made symmetrical : a classical product AB  becomes 1
2

AB BA+b g .

5. The uncertainty principle

If the uncertainty ∆A is defined as : ∆ Ψ ΨA A A A Aopb g2 2 2 2 2= − = −  it follows :

∆ ∆ Ψ ΨA B A B≥
1
2

,

From this follows : ∆ ∆E t ≥
2

, and because x p i x p L L Lx x x y z, = ≥ ≥ holds :  and ∆ ∆ ∆ ∆
2 2

.

6. The Schrödinger equation

The momentum operator is given by : p iop = − ∇ . The position operator is : x iop p= ∇ . The

energy operator is given by : E i
top =
∂
∂

. The Hamiltonien of a particle with mass m,
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potential energy U  and total energy E  is given by : H p
m

U= +
2

2
. From H EΨ Ψ=  then

follows the Schrödinger equation :

− ∇ + = =
2

2

2m
U E i

t
Ψ Ψ Ψ

Ψ∂
∂

The linear combinaison of the solutions of this equation give the general solution. In one
dimension it is :

Ψ x t dE c E u x eE

i Et
,b g e j b g b g= +∑ z −

The current density J  is given by : J
im

= ∇Ψ −∗ ∗

2
Ψ Ψ∇Ψc h

The following conservation law holds : 
∂

∂
P x t

t
J x t

,
,b g b g= −∇

7. Parity

The parity operator in one dimension is given by ΠΨ Ψx xb g b g= − . If the wave function is split
in even and odd functions, it can be expanded into eigenfunctions of Π  :

Ψ Ψ Ψ Ψ Ψ

Ψ Ψ

x x x x xb g b g b g b g b g= + − + − −

+ −

1
2

1
2

even : odd : 

Π, H = 0. The function Ψ Π Ψ Ψ Π Ψ+ −= + = −
1
2

1 1
2

1b g b g b g b gx t x t, , and  both satisfy the

Schrödinger equation. Hence, parity is a conserved quantity.

8. The tunnel effect

The wave function of a particle in an ∞  high potential step from x x a= =0 to  is given by :

Ψ x
a

kxb g = 1 sin

The energy levels are given by : E n
man =

2
2 2

22
π .

If the wave function with energy W  meets a potential well of W W0 >  the wave function will,
unlike the classical case, be non-zero within the potential well. If 1,2 and 3 are the area in
front, within and behind the potential well, holds :

Ψ Ψ Ψ1 2 3= + = + =− −Ae Be Ce De A eikx ikx ik x ik x ikx, , '' '

with k
m W W

k mW'2 0
2

2
2

2 2
=

−
=

b g  and . Using the boundary conditions requiring continuity :

Ψ
Ψ and ∂

∂ x
 continuous at x x a= =0 and  gives B C D A, ' and  and  expressed in A.

The amplitude T  of the transmitted wave is defined by T
A
A

=
' 2

2 .
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If W W> 0  and 2 2 1a n n
k

T= = =λ π'
'

 holds : .

9. The harmonic oscillator

For a harmonic oscillator holds : U bx b
m

= =
1
2

2
0
2 and ω . The Hamiltonien H  is given by :

H p
m

m x A A= + = + +
2

2 2

2
1
2

1
2

ω ω ω

with : A m x ip
m

A m x ip
m

= + = −+1
2 2

1
2 2

ω
ω

ω
ω

 and 

A A≠ +  is non hermitic. A A A H A, ,+ = = and ω . A is a so called raising ladder
operator, A+a lowering ladder operator. HAu E AuE E= − ωb g . There is an eigenfunction u0

for which holds : Au0 0= . The energy in this ground state is 1
2

ω : the zero point energy. For

the normalized eigenfunction follows :

u
n

A u u m en

n m x

=
F
HG
I
KJ = FHG

I
KJ

+ −1
0 0

1
4

2

2

!
 with ω

π

ω

with E nn = +FHG
I
KJ

1
2

ω .

10. Angular momentum

For the angular momentum operators L  holds : L L L H L Hz z, , ,2 2 0= = = . However,

cyclically holds : L L i Lx y z, = . Not all components of L  can be known at the same time with
arbitrary accuracy. For Lz  holds :

L i i x
y

y
xz = − = − −

F
HG

I
KJ

∂
∂ϕ

∂
∂

∂
∂

The ladder operator L±  are defined by : L L iLx y± = ± . Now holds : L L L L Lz z
2 2= + −+ − .

Further,

L e ii
±

±= ± +
F
HG

I
KJ

ϕ ∂
∂ θ

θ ∂
∂ϕ

cot

From L L Lz+ += −,  follows : L L Y m L Yz l
m

l
m

+ += +c h b g c h1

From L L Lz− −=,  follows : L L Y m L Yz l
m

l
m

− −= −c h b g c h1

From L L2 0, ± =  follows : L L Y l l L Yl
m

l
m2 21± ±= +c h b g c h

Because L Lx y and  are hermitic (this implies L L±
+ = ∓ ) and L Yl

m
± >

2
0  follows :

l l m m l m l+ − − ≥ ⇒ − ≤ ≤1 02b g . Further follows that l has to be integral or half-integral.
Half-odd integral values give no unique solution Ψ  and are therefore dismissed.
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11. Spin

For the spin operators are defined by their commutation relations : S S i Sx y z, = . Because the
spin operators do not act in the physical space (x y z, , ) the uniqueness of the wave function is
not a criteria here : also half odd-integer values are allowed for the spin. Because L S, = 0
spin and angular momentum operators do not have a common set of eigenfunctions. The spin
operators are given by :

S
i

ix y z= =
F
HG
I
KJ =

−F
HG
I
KJ =

−
F
HG
I
KJ2

0 1
1 0

0
0

1 0
0 1

σ σ σ σ  with , ,

The eigenstates of Sz  are called spinors : χ α χ α χ= ++ + − −  where χ+ = 1 0,b g represents the

state with spin up Sz =
F
HG
I
KJ2  and χ− = 0 1,b g represents the state with spin down Sz = −

F
HG

I
KJ2 .

Then the probability to find spin up after a measurement is given by α +
2  and the chance to

find spin down is given by α −
2 . Of course holds α +

2 +α −
2 =1.

The electron will have an intrinsic magnetic dipole moment M  due to its spin, given by

M g e
m

SS= −
2

 with gS = + +F
HG

I
KJ2 1

2
α
π

 the gyromagnetic ratio. In the presence of an external

magnetic field this gives a potential energy U M B= − . . The Schrödinger equation then

becomes (because ∂ χ
∂ xi

≡ 0) :

i
t

t
g e

m
B tS

∂ χ
∂

σ χb g b g=
4

.

with σ σ σ σ= x y z, ,e j .
If  B Bez=  there are two eigenvalues for this problem : χ±  for E g e

mS= ± = ±
4

ω .

So the general solution is given by χ ω ω= −ae bei t i t,c h . From this can be derived :

S t S tx y= =
2

2
2

2cos sinω ω and 

Thus the spin precesses about the z-axis with frequency 2ω . This causes the normal Zeeman
splitting of spectral lines.

The potential operator for two particles with spin ±
2

 is given by :

V r V r
V r

S S V r
V r

S Sb g b g b g d i b g b g b g= + = + + −L
NM

O
QP1

2
2 1 2 1

2

2
1 3

2
.

This makes it possible for two states to exist : S S= =1 0 triplet  or  singuletb g b g.

12. The Dirac formalism

If the operators for p E and   are substituted in the relativistic equation E m c p c2
0
2 4 2 2= + , the

Klein-Gordon equation is found :
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∇ − −
F
HG

I
KJ =2

2

2

2
0
2 2

2
1 0
c t

m c x t∂
∂

Ψ ,b g

The operator 
2 2
0

2

m c
−  can be separated :

∇ − − = −
RST

UVW
+

RS|T|
UV|W|

2
2

2

2
0
2 2

2
0
2 2

2
0
2 2

2
1
c t

m c
x

m c
x

m c∂
∂

γ ∂
∂

γ ∂
∂λ

λ
µ

µ

where the Dirac matrices γ are given by : γ γ γ γ δλ µ µ λ λ µ+ = 2 . from this it can be derived
that the γ are hermitic 4 4×  matrices given by :

γ
σ

σ
γk

k

k

i
i

I
I

=
−F

HG
I
KJ =

−
F
HG
I
KJ

0
0

0
04,

With this, the Dirac equation becomes :

γ ∂
∂λ

λx
m c x t+

F
HG

I
KJ =0

2 2

2 0Ψ ,b g

where Ψ Ψ Ψ Ψ Ψx x x x xb g b g b g b g b gc h= 1 2 3 4, , ,  is a spinor.

13. Atomic physics

12.1-/ Solutions

The solutions of the Schrödinger equation in spherical coordinates if the potential energy is a
function of r  alone can be written as : Ψ r R r Ynl l

m
m, , ,θ ϕ θ ϕ χb g b g b g= , with :

Y C P el
m lm

l
m im=

2π
θ ϕcosb g

For an atom or ion  with one electron holds : R C e Lnl nl n l
lρ ρ

ρ

b g b g=
−

− −
+

2

2
1

2 1

with ρ ε
π

= =
2

0
0

0
2

2
rZ

na
a

m ee

 and . The Li
j  are the associated Laguerre functions and Pl

m are the

associated Legendre polynomials :

P x x d
dx

x L x
n

n m
e x d

dx
e xl

m
m m

m

l

n
m

m
x m

n m

n m
x nb g c h c h b g b gb g c h= − − =

−
−

− −
−

−
−1 1

12 2 2 ,
!
!

The parity of these solutions is −1b gl . The functions are 2 2 1 2
0

1
2l n

l

n

+ =
=

−

∑ b g  degenerated.

12.2-/ Eigenvalue equations

The eigenvalue equations for an atom or ion with one electron are :
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Equation Eigenvalue Range
H EopΨ Ψ=

E e Z
h nn =

µ
ε

4 2

0
2 2 28

n ≥1

L Y L Yz op l
m

z l
m= L mz = − ≤ ≤l m l

L Y L Yop l
m

l
m2 2= L l l2 21= +b g l n<

S Sz op zχ χ= S mz S=
mS = ±

1
2

S Sop
2 2χ χ= S s s2 1= +b g s = 1

2

12.3-/ Spin-orbit interaction

The total momentum is given by J L S= + . The total magnetic dipole moment of an electron

is then M M M e
m

L g SL S
e

S= + = − +
2 d i  where gS = 2 0023,  is the gyromagnetic ratio of the

electron. Further holds : J L S L S L S L S L S L Sz z
2 2 2 2 22 2= + + = + + + ++ − − +. .

J  has quantum number j  with possible values j l= ±
1
2

 with 2 1j +  possible z-components

m j jJ ∈ − , , , ,0l qc h. If the interaction energy between S L and  is small it can be stated that
:
E E E E aS Ln SL n= + = + . . It can be derived that :

a
E Z

nl l l

n=
+ +FHG

I
KJ

2 2

2 1 1
2

α

b g
After a relativistic correction this becomes :

E E
E Z

n n j
n

n= + −
+

F

H
GGG

I

K
JJJ

2 2 3
4

1
1
2

α

The fine structure in atomic spectra arises from this. With gS = 2 follows for the average

magnetic moment : M e
m

g Jav
e

= −
2

 where g  is the Landé-factor :

g S J
J

j j s s l l
j j

= + = +
+ + + − +

+
1 1

1 1 1
2 12

. b g b g b g
b g

For atoms with more than one electron the following limiting situations occur :
1. L S−  coupling : for small atoms the electrostatic interaction is dominant and the state
can be characterized by L S J m J L S L S L SJ, , , . , , ,∈ − + + +1m r and m J J JJ ∈ − −, , ,1l q.
The spectroscopic notation for this interaction is : 2 1 2 1S

JL S+ +,  is the multiplicity of a
multiplet.
2. j j−  coupling : for larger atoms the electrostatic interaction is smaller than the L si i−
interaction of an electron. The state is characterized by j j J mi n J, ,  where only the ji of the
not completely filled subshells are to be taken into account.
The energy difference for larger atoms when placed in a magnetic field is : ∆E g m BB J= µ
where g  is the Landé factor. For a transition between two singlet states the line splits in 3
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parts, for ∆mj = − +1 0 1, , . This results in the normal Zeeman effect. At higher S   the line splits
up in more parts : the anomalous Zeeman effect.
Interaction with the spin of the nucleus gives the hyperfine structure.

12.4-/ Selection rules

For the dipole transition matrix elements follows : p l m E r l m0 2 2 1 1≈ , . , . Conservation of
angular momentum demands that for the transition of an electron holds that ∆l = ±1.
•For an atom where L S−  coupling is dominant further holds : ∆S = 0 (but not strict),
∆L = ±0 1, , ∆J = ±0 1,  except for J J= → =0 0  transition, ∆mJ = ±0 1, , but ∆mJ = 0 is
forbidden if ∆J = 0.
•For an atom where j j−  coupling is dominant further holds : for the jumping electron holds,
except ∆l = ±1, also : ∆j = ±0 1, , and for all other electron : ∆j = 0. For the total atom holds :
∆J = ±0 1,  but no J J= → =0 0  transitions and ∆mJ = ±0 1, , but ∆mJ = 0 is forbidden if
∆J = 0.

14. Interaction with electromagnetic fields

The Hamiltonien of an electron in a electromagnetic field is given by  :

H p eA eV e B L e A eV= + − = − ∇ + + −
1

2 2 2 2
2 2

2
2

2

µ µ µ µd i .

where µ  is the reduced mass of the system. The term ≈ A2 can usually be neglected, except

for very strong fields or macroscopic motions. For B Bez=  it given by 
e B x y2 2 2 2

8
+c h

µ
.

When a gauge transformation A A f V V f
t

' , '= −∇ = +
∂
∂

 is applied to the potentials the wave

function is also transformed according to Ψ Ψ'= e
i qef

 with qe  the charge of the particle.
Because f f x t= ,b g, this is called a local gauge transformation, in contrast with a global
gauge transformation which can always be applied.

15. Perturbation theory

14.1-/ Time-independent perturbation theory

To solve the equation H H En n n0 1+ =λb gΨ Ψ  one has to find the eigenfunctions of
H H H= +0 1λ . Suppose that Φn  is a complete set of eigenfunctions of the non-perturbed
Hamiltonien H0 : H En n n0

0Φ Φ= . Because Φn  is a complete set holds :

Ψ Φ Φn n nk k
k n

N c= +
RST

UVW≠
∑λ λb g b g
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When c Enk n and  are being expanded into λ  : 
c c c

E E E E
nk nk nk

n n n n

= + +

= + + +

R
S|
T|

λ λ

λ λ

1 2 2

0 1 2 2

b g b g

b g b g  and this put into

the Schrödinger equation the result is : E H c
H

E E
m nn n n nm

m n

n m

1
1

1 1
0 0

b g b g= =
−

≠Φ Φ
Φ Φ

 and  if .

The second order correction of the energy is then given by : E
H

E En
k n

n kk n

2 1
2

0 0
b g =

−≠
∑

Φ Φ
. So to

first order holds : Ψ Φ
Φ Φ

Φn n
k n

n k
k

k n

H
E E

= +
−≠

∑ 1
0 0 .

In case the levels are degenerated the above does not hold. In that case an orthogonal set
eigenfunctions Φni  is chosen for each level n , so that Φ Φmi nj mn ij= δ δ . Now Ψ  is expanded

as : Ψ Φ Φn i ni nk
k n

i ki
ii

N c= + +
RST

UVW≠
∑ ∑∑λ α λ βb g b g1

E E Eni ni ni= +0 1λ b g  is approximated by E Eni n
0 0= . Substitution in the Schrödinger equation and

taking dot product with Φni  gives : α αi nj ni
i

n jH EΦ Φ∑ = 1b g . Normalization requires that

α i
i

2 1∑ = .

14.2-/ Time-dependent perturbation theory

From the Schrödinger equation i
t

t
H V t t

∂
∂

λ
Ψ

Ψ
b g b gc h b g= +0

and the expansion Ψ Φt c t e c t c tn

i E t

n
n

n nk n
nb g b g b g b gb g= = + +

−

∑
0

1 with δ λ  follows :

c t
i

V t e dtn n k

i E E t
t

n k1

0

0 0b g e jb g b g=
−zλ Φ Φ' '

'

16. N-particles systems

15.1-/ General

Identical particles are indistinguishable. For the total wave function  of a system of
indistinguishable particles holds :

•  Particles with a half-odd integer spin (Fermions) : Ψtotal  must be antisymmetric w.r.t.
interchange of the coordinates (spatial and spin) of each pair of  particles. The Pauli principle
results from this : two Fermions cannot exist in an identical state because then Ψtotal = 0.

•  Particles with an integer spin (Bosons) : Ψtotal  must be symmetric w.r.t. interchange of the
coordinates (spatial and spin) of each pair of  particles.

For a system of two electron there are 2 possibilities for the spatial wave function. When
a b and  are the quantum numbers of electron 1 and 2 holds :
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Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ ΨS a b a b A a b a b1 2 1 2 2 1 1 2 1 2 2 1, , ,b g b g b g b g b g b g b g b g b g b g= + = −
Because the particles do not approach each other closely the repulsion energy at ΨA in this
state is smaller. The following spin wave function are possible :

χ χ χ χ χ

χ

χ χ

χ χ χ χ

χ χ

A S

S

S

S

S

m

m

m

m

= − =

=

= +

+ =

= −

R
S
||

T
||

+ − + −

+ +

+ − + −

− −

1
2

1 2 2 1 0

1 2 1
1
2

1 2 2 1 0

1 2 1

b g b g b g b g
b g b g
b g b g b g b g

b g b g

                                 

   

                                 
Because the total wave function must be antisymmetric it follows : Ψ Ψtotal S A= χ  or
Ψ Ψtotal A S= χ .
For N  particles the spatial function is given by :

Ψ ΨS N N1 1, ,b g b g= ∑ allpermutation of

The antisymmetric wave function is given by the determinant : ΨA EiN
N

u j1 1, ,
!

b g b g=

15.2-/ Molecules

The wave function of atom a b and  are Φ Φa b and . If the 2 atoms approach each other  there
are two possibilities : the total wave function approaches the bonding function with lower

total energy Ψ Φ ΦB a b= +
1
2
b g  or approaches the anti-bonding function with higher energy

Ψ Φ ΦB a b= −
1
2
b g . If a molecular-orbital is symmetric w.r.t. the connecting axis, like a

combination of two s-orbital it is called a σ -orbital, otherwise a π -orbital, like the
combination of two p-orbital along two axes.

The energy of a system is : E
H

=
Ψ Ψ
Ψ Ψ

.

The energy calculated with this method is always higher than the real energy if Ψ  is only an
approximation for the solution of H EΨ Ψ= . Also, if there are more functions to be chosen,
the function which gives the lowest energy is the best approximation. Applying  this to the
function Ψ Φ=∑ci i  one finds : H ES cij ij i− =d i 0. This equation has only solutions if the

secular determinant H ESij ij− = 0. Here H Hij i j= Φ Φ  and Sij i j= Φ Φ . α i iiH=  is the
Coulomb integral and β ij ijH=  the exchange integral. S Sii ij= 1 and  is the overlap integral.
The first approximation in the molecular-orbital theory is to place both electrons of a
chemical bond in the bonding orbital : Ψ Ψ Ψ1 2 1 2,b g b g b g= B B . This results in a large electron
density between the nuclei and therefore a repulsion. A better approximation is :

Ψ Ψ Ψ Ψ Ψ1 2 1 2 1 21 2,b g b g b g b g b g= +C CB B AB AB

with C C1 21 0 6= ≈ and , .
In some atoms, such as C, it is energetically more suitable to form orbitals which are linear
combination of the s,p and d states. There are tree ways of hybridation in C :

•SP-hybridation : Ψ Ψ Ψsp s pz
= ±

1
2 2 2d i . There are 2 hybrid orbitals which are placed on one

line under 180°. Further the 2 2p px y and  orbitals remain.
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•SP2  hybridation : Ψ Ψ Ψ Ψ
sp s p pc c

z y2

1
3 2 1 2 2 2= + + ,

where c c1 2
2
3

0 1
6

1
2

1
6

1
2

, , , , , ,b g∈ FHG
I
KJ −FHG

I
KJ − −F
HG

I
KJ

RS|T|
UV|W|

. The 3 SP2  orbitals lay in one plane,

with symmetry axes which are at an angle of 120°.

•SP3 hybridation : Ψ Ψ Ψ Ψ Ψ
sp s p p pz y x3

1
2 2 2 2 2= ± ± ±e j. The 4 SP3 orbitals form a tetraheder

with the symmetry axes at an angle of 109°28’.

17. Quantum statistics

If a system exists in a state in which one has not the disposal of the maximal amount of
information about the system, it can be described by a density matrix ρ . If the probability
that the system is in state Ψi  is given by ai , one can write for the expectation value a A of :

a r Ai i i
i

= ∑ Ψ Ψ

If Ψ  is expanded into an orthogonal basis Φkl q as : Ψ Φi
k
i

k
k

cb g b g= ∑ , holds :

A A Akk
k

= =∑ ρ ρb g b gTr

where ρ ik k ic c= ∗ . ρ is hermitian, with Trρ = 1. Further holds ρ = ∑ ri i iΨ Ψ . The probability
to find eigenvalue an  when measuring A is given by ρnn  if one uses a basis of eigenvectors of
A for Φkl q.
For the time-dependence holds (in the Schrödinger image operators are not explicitly time-
dependent) :

i d
dt

Hρ ρ= ,

For a macroscopic system in equilibrium holds H ,ρ = 0. If all quantum states with the same
energy are equally probable : P P Ei i= b g, one cane obtain the distribution :

P E e
Zn nn

E
kT

n

b g = =
−

ρ  with the state sum Z e
E
kT

n

n

=
−

∑
The thermodynamic quantities are related to these  definitions as follows :

F kT Z U H P E
kT

Z S k P Pn n
n

n n
n

= − = = = − = −∑ ∑ln , ln , ln∂
∂

For a mixed state of M  orthonormal quantum  states with probability 1
M

 follows :

S k M= ln .
The distribution function for the internal states for a system in thermal equilibrium is the most
probable function. This function can be found by taking  the maximum of the function which
gives the number of states with Stirling’s equation : ln ! lnn n n n≈ − , and the conditions

n Nk
k
∑ =  and n W Wk k

k
∑ = . For identical, indistinguishable particles which obey the Pauli

principle the possible number of states is given by :

P g
n g n

k

k k kk

=
−∏ !

! !b g
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This results in the Fermi-Dirac statistics. For indistinguishable particles  which do not obey
the exclusion principle the possible number of states is given by :

P N g
n

k
n

kk

k

= ∏! !
This result in the Bose-Einstein statistics. So the distribution function which explain how
particles are distributed over the different one-particle states k  which are each gk -fold
degenerate depend on the spin of  the particles. They are given by :

•  Fermi-Dirac statistics : half odd-integer spin. nk ∈ 0 1,l q, n N
Z

g

e
k

g

k
E

kT
k

=
+

−µ

1

with ln lnZ g eg k

E
kT
i

= +
F
HG

I
KJ

−

∑ 1
µ

•  Bose-Einstein statistics : integer spin. nk ∈N, n
N
Z

g

e
k

g

k
E

kT
k

=
−

−µ

1

with ln lnZ g eg k

E
kT
i

= − −
F
HG

I
KJ

−

∑ 1
µ

Here Zg  is the large-canonical state sum and µ the chemical potential. It is found by
demanding n Nk

k
∑ = , and for it holds : lim

T FE
→

=
0
µ , the Fermi-energy. N  is the total number

of  particles.
The Maxwell-Boltzmann distribution can be derived from this in the limit E kTk − >>µ :

n N
Z

e Z g ek

E
kT

k

E
kT

k

k k

= =
− −

∑ with 

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as :

•  Fermi-Dirac statistics : n
g

e
k

k
E E

kT
k F

=
+

−

1

•Bose-Einstein statistics : n
g

e
k

k
E E

kT
k F

=
−

−

1

Theory of groups

- The relation with quantum mechanics
- Applications to quantum mechanics

1.Introduction

1.1-/ Definition of a group

G  is a group for the operation •  if :
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1. ∀ ⇒ • ∈∈A B G A B G G, :  is closed.
2. ∀ ⇒ • • = • •∈A B C G A B C A B C G, , :b g b g  obeys the associative law.
3. ∃ ∈E G  so that ∀ • = • =∈A G A E E A A G:  has a unit element.
4. ∀ ∃∈ ∈−A G A G1  so that A A E• =−1  : Each element in G  has an inverse.

If also holds :
5. ∀ ⇒ • = •∈A B G A B B A,  the group is called Abelian or commutative.

1.2-/ The Cayley table

Each element arises only once in each row and column of the Cayley or multiplication table :
because EA A A A Ai k k i i= =−1b g  each Ai appears once. There are h  position in each row and
column when there are h  elements in the group so each element appears only once.

1.3-/ Conjugated elements, subgroups and classes

B  is conjugate to A if ∃ ∈X G  such that B XAX= −1. Then A is also conjugate to B  because
B X A X= − − −1 1 1c h c h . If B C and  are conjugate to A, B  is also conjugate with C .
A subgroup is a subset of G  which is also a group w.r.t. the same operation.
A conjugacy class is the maximum collection of conjugated elements. Each group can be split
up in conjugacy classes. Some theorems :

•  All classes are completely disjoint.
•  E  is a class itself  : for each other element in this class would hold :

A XEX E= =−1 .
•  E  is the only class which is also a subgroup because all other classes have no unit 
    element.
•  In an Abelian group each element is a separate class.

The physical interpretation of classes : elements of a group are usually symmetry operations
which map a symmetrical object  into itself. Elements of one class are then same kind of
operations. The opposite need not to be true.

1.4-/ Isomorfism and homomorfism : representations

 Two groups are isomorphic if  they have the same multiplication table. The mapping from
group G1 to G2  so that the multiplication table remains the same is a homomorphic mapping.
It need not be isomorphic.
A representation is a homomorphic mapping of a group of square matrices with the usual
matrix multiplication as the combining operation. This is symbolized by Γ . The following
holds :

Γ Γ Γ Γ Γ ΓE I AB A B A Ab g b g b g b g c h b g= = =− −
, , 1 1

For each group there are 3 possibilities for a representation :
1. A faithful representation : all matrices are different.
2. The representation A A→ det Γb gc h.
3. The identical representation : A→1.

An equivalent representation is obtained by performing an unitary base transform :
Γ Γ' A S A Sb g b g= −1
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1.5-/ Reducible and irreducible representations

If the same unitary transformation can bring all matrices of a representation Γ  in the same
block structure the representation is called reducible :

Γ
Γ

Γ
A

A
A

b g b g
b g

b g
b g=

F
HG

I
KJ

1

2

0
0

This is written as : Γ Γ Γ= ⊕1 2b g b g . If this is not possible the representation is called
irreducible.
The number of irreducible representations equals the number of conjugacy classes.

2. The fundamental orthogonality theorem

2.1-/ Schur’s lemma

Lemma : Each matrix which commutates with all matrices of an irreducible representation is
a constant × I , where I  is the unit matrix. The opposite is (of course) also true.
Lemma : if there exists a matrix M  so that for two irreducible representations of group
G A Ai i, γ γ1 2b g b gb g b g and , holds : M A A Mi iγ γ1 2b g b gb g b g= , than the representations are
equivalent, or M =

=
0.

2.2-/ The fundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds that, if h  is the number of
elements of the group and li  is the dimension of the ith  representation :

Γ Γµν αβ µα νβδ δ δi j

R G i
ijR R h

l
b g b gb g b g

∈
∑ =

2.3-/ Character

The character of a representation is given by the trace of the matrix and is therefore invariant
for base transformations :

χ j jR Rb g b gb g b ge j= Tr Γ

Also holds, with Nk  the number of elements in a conjugacy class :

χ χ δi
k

j
k k

k
ijC C N hb g b gb g b g∗∑ =

Theorem : l hi
i

n
2

1−
∑ =
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3. The relation with quantum mechanics

3.1-/ Representation, energy levels and degeneracy

Consider a set of symmetry transformations x Rx'=  which leave the Hamiltonien H
invariant. These transformations are a group. An isomorfic operation on the wave function is
given by : P x R xRΨ Ψb g c h= −1 . This is considered an active rotation. These operators commute
with H  : P H HPR R=  and leave the volume element unchanged : d Rx dxb g = .
PR is the symmetry group of the physical system. It causes degeneracy : if Ψn is a solution of
H En n nΨ Ψ=  than also holds : H P E PR n n R nΨ Ψb g b g= . A degeneracy which is not the result of a
symmetry is called accidental degeneracy.
Assume an ln -fold degeneracy at En  : then choose an orthonormal set Ψν νn

nl
b g , , , ,= 1 2 . The

function PR
nΨν
b g  is in the same subspace : P RR

n n n
ln

Ψ Ψ Γν κ κν
κ

b g b g b gb g=
=
∑

1
 where Γ nb g  is an

irreducible, unitary representation of the symmetry group G  of the system. Each n
corresponds with another energy level. One can purely mathematical derive irreducible
representations of a symmetry group and label the energy levels with a quantum number this
way. A fixed choice of Γ n Rb gb g defines the base functions Ψν

nb g. This way one can also label
each separate base function with a quantum number.

Particle in a periodical potential : the symmetry operation is a cyclic group : note the
operator describing one translation over one unit as A. Then : G A A A A Eh= =, , , ,2 3m r .
The group is Abelian so all irreducible representations are one-dimensional. For 0 1≤ ≤ −p h
follows :

Γ p n
i np

A eb gc h =
If one defines : k p

ah a
P x x a e xA p p

i p
h

p= − F
HG

I
KJ = − =

2 2 2π π π

mod  so : , Ψ Ψ Ψb g b g b g , this gives

Bloch’s theorem : Ψk k
ikx

k kx u x e u x a u xb g b g b g b g= ± =,  with .

3.2-/ Breaking of degeneracy by a perturbation

Suppose the unperturbed system has Hamiltonien H0 and symmetry group G0 . The perturbed
system has H H V= +0 , and symmetry group G G⊂ 0 . If Γ n Rb gb g is an irreducible
representation of G0 , it is also a representation of  G  but not all elements of  Γ n Rb gb g in G0  are
also in G . The representation then usually becomes reducible : Γ Γ Γn n nb g b g b g= ⊕ ⊕1 2  The
degeneracy is then (possibly partially) removed :

ln

Spectrum H0 Spectrum H

ln
n

1

1= dim Γb ge j
ln

n
2

2= dim Γb ge j
ln

n
3

3= dim Γb ge j



Quantum Physics Formulary by D.Marchand 20

Theorem : The set of ln  degenerated eigenfunctions Ψν
nb g with energy En  is a basis for an ln -

dimensional irreducible representation Γ nb g  of the symmetry group.

3.3-/ The construction of a base function

Each function F  in configuration space can be decomposed into symmetry types :

F f j
l

j

n j

=
==
∑∑ κ
κ

b g
11

. The following operator extracts the symmetry types :

l
h

R P F fj j
R

R G

jΓκκ κ
b g b gb g∗

∈
∑FHG

I
KJ =

This is expressed as : f j
κ
b g  is the part of  F  that transforms according to the κ th  row of Γ jb g .

F  can  also be expressed in base  functions Φ  : F caj
aj

aj

= ∑ κ κ
κ

Φb g . The functions f j
κ
b g  are in

general not transformed into each other by elements of the group. However,  this does happen
if c caj ajκ = .
Theorem : Two wavefunctions transforming according to non-equivalent unitary
representation or according to different rows of an unitary irreducible representation are
orthogonal : Φ Φ Φ Φκ λ κλ κ κδ δi j

ij
i ib g b g b g b g≈  and   is independent of κ .

3.4-/ The direct product of representations

Consider a physical system existing of two subsystems. The subspace D ib g  of the system
transforms according to Γ ib g. Basefunctions are Φκ κi

i ix lb gb g ,1≤ ≤ . Now form all l l1 2×
products Φ Φκ λ

1
1

2
2

b g b gb g b gx x . These define a space D D1 2b g b g⊗ .
These product functions transform as :

P x x P x P xR R RΦ Φ Φ Φκ λ κ λ
1

1
2

2
1

1
2

2
b g b g b g b gb g b ge j b ge j b ge j=

In general the space D D1 2b g b g⊗  can be split up in a number of invariant subspaces :
Γ Γ Γ1 2b g b g b g⊗ =∑ ni

i

i

A useful tool for this reduction is that for the characters hold :
χ χ χ1 2b g b g b gb g b g b gR R n Ri

i

i

= ∑

3.5-/ Clebsch-Gordan coefficients

With the reduction of the direct-product matrix w.r.t. the basis Φ Φκ λ
i jb g b g  one uses a new basis

Φµ
κab g. These base functions lie in subspace D akb g . The unitary base transformation is given by

Φ Φ Φµ κ λ
κλ

κ λ µak i j i j akb g b g b gc h= ∑
and the inverse transformation by : Φ Φ Φκ λ µ

κ

µ

µ κ λi j a

ak

ak i jb g b g b gc h= ∑
In essence the Clebsch-Gordan coefficients are dot products :

 i j ak k
i j kκ λ µ λ µc h b g b g b g= Φ Φ Φ
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3.6-/ Symmetric transformations of operators, irreducible tensor
operators

Observables (operators) transform as follows under symmetry transformations : A P APR R'= −1.
If a set of operators A lj

jκ κb g with 0 ≤ ≤  transform into each other under the transformations of
G  holds :

P A P A RR
j

R
j j

κ ν νκ
ν

b g b g b gb g− = ∑1 Γ

If Γ jb g  is irreducible they are called irreducible tensor operators A jb g with components A j
κ
b g.

An operator can also be decomposed into symmetry types : A ak
j

jk

= ∑ b g , with :

a
l
h

R P APj j j

R G
R Rκ κκ

b g b g b g c h=
F
HG

I
KJ

∗

∈

−∑Γ 1

Theorem : Matrix elements Hij  of the operator H  which is invariant under ∀ ∈A G  are 0
between staes which transform according to non-equivalent irreducible unitary representations
or according to different rows of such a representation. Further Φ Φκ κ

i iHb g b g  is independent
of κ . For H =1 this becomes the previous theorem.
This is applied in quantum mechanics in perturbation theory and variational calculus. Here
one tries to diagonalize H . Solutions can be found within each category of functions Φκ

ib g  with
common i and κ : H  is already diagonal in categories as a whole.
Perturbation calculus can be applied independent within each category. With variational
calculus the try function can be chosen within a separate category because the exact
eigenfunctions transform according to a row of an irreducible representation.

3.7-/ The Wigner-Eckart theorem

Theorem : The matrix element Φ Φλ κ µ
i j kAb g b g b g  can only be ≠ 0 if Γ Γ Γj k ib g b g b g⊗ ⊗ = ⊕ ⊕

If this is the case holds (if Γ ib g appears only once, otherwise one has to sum over a ) :

Φ Φ Φ Ψλ κ µ λ κ µi j k i j kA i j k Ab g b g b g b g b g b gc h=

This theorem can be used to determine selection rules : the probability of a dipole transition is
given by (ε  is the direction of polarization of the radiation) :

P
e f r

c
r l m r l mD = =

8
3

2 2 3
12

2

0
3 12 2 2 1 1

π
ε

ε with .

Further it can be used to determine intensity ratios : if there is only one value of a  the ratio of
the matrix elements are the Clebsch-Gordan coefficients. For more a -values relations
between the intensity ratios can be stated. However, the intensity ratios are also dependent on
the occupation of the atomic energy levels.
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4. Continuous groups

Continuous groups have h = ∞ . However, not all groups with h = ∞  are continuous, e.g. the
translation group of an spatially infinite periodic potential is not continuous but does have
h = ∞ .
4.1-/ The 3-dimensional translation group

For the translation of wave function over a distance aholds : P x x aaΨ Ψb g b g= − . Taylor
expansion near x  gives :

Ψ Ψ
Ψ Ψ

x a x a
d x

dx
a

d x
dx

− = − + −b g b g b g b g1
2

2
2

2

Because the momentum operator in quantum mechanics is given by : p
i xx =
∂
∂

, this can be

written as :

Ψ Ψx a e x
i a px− =

−b g b g

4.2-/ The 3-dimensional rotation group

This group is called SO(3) because a faithful representation can be constructed from
orthogonal 3x3 matrices with a determinant of +1.
For an infinitesimal rotation around the x -axis holds :

P x y z x y z z y

x y z z
y

y
z

x y z

i L x y z

x x x

x x

x x

δ θ δ θ δ θ

δ θ ∂
∂

δ θ ∂
∂

δ θ

Ψ Ψ

Ψ Ψ

Ψ

, , , ,

, , , ,

, ,

b g b g
b g b g

b g

≈ + −

= + −
F
HG

I
KJ

= −FHG
I
KJ

                     

                     1

Because the angular momentum operator is given by : L
i

z
y

y
zx = −

F
HG

I
KJ

∂
∂

∂
∂

So in an arbitrary direction holds :
Rotations :     

Translations : 

P e

P e

n

i n J

a n

i a n p

α

α

,

.

,

.

=

=

R
S|

T|

−

−

d i

b g

J J Jx y z,  and  are called the generators of the 3-dim. rotation group, p p px y z,  and  are called
the generators of the 3-dim. translation group.
The commutation rules for the generators can be derived from the properties of the group for
multiplications : translations are interchangeable ↔ − =p p p px y y x 0.
Rotations are not generally interchangeable : consider a rotation around axis n  in the z -plane
over an angle α . Then holds : P P P Pn y x yα θ α θ, , , ,= − , so :

e e e e
i n J i J i J i Jy x y− − −

=
α θ α θ.d i

If α θ and  are very small and are expanded to second order, and the corresponding terms are
put equal with n J J Jx z. cos sin= +θ θ , it follows from the αθ  term : J J J J i Jx y y x z− = .
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4.3-/ Properties of continuous groups

The elements R p pn1, ,b g depend continuously on parameters p pn1, , . For the translation group
this are e.g. an an anx y z and . It is demanded that the multiplication and inverse of an element R
depend continuously on the parameters of R .
The statement that each element arises only once in each row and column of the Cayley table
holds also for  continuous groups. The notion conjugacy class for continuous groups is
defined equally as for discrete groups. The notion representation is fitted by demanding
continuity : each matrix element depends continuously on p Rib g.
Summation over all group elements is for continuous groups replaced by an integration. If
f Rb g  is a function defined on G , e.g. Γα β Rb g , holds :

f R dR f R p p g R p p dp dp
G

n n n
pp n

b g b gc h b gc hz zz= 1 1 1

1

, , , ,

Here, g Rb g is the density function.
Because of the properties of the Cayley table is demanded : f R dR f SR dRb g b gz z= . This

fixes g Rb g except for a constant factor. Define new variables p' by : SR p R pi ib g b g= ' . If one
written dV dp dpn= 1  holds :

g S g E dV
dV

b g b g=
'

Here, dV
dV '

 is the Jacobian : 
dV
dV

p
p

i

j' '
=
F
HG
I
KJdet ∂

∂
 , and g Eb g  is constant.

For the translation group holds : g a gb g d i= =constant 0  because g an da g da dab g d i' '= =0  and 
This leads to the fundamental orthogonality theorem :

Γ Γµν αβ µα νβδ δ δi j

G i
ij

G

R R dR
l

dRb g b gb g b g∗z z=
1

Compact groups are groups with group volume : dR
G
z < ∞ .

5. The group SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of
rotation ϕ . The parameter space is a collection points ϕ n  within a sphere with radius π . The
diametrical points on this sphere are equivalent because R Rn n, ,π π= − .
Another way to define parameters is by means of Euler angles. If α β γ,  and  are the 3 Euler
angles, defined as :

1- The spherical angles of axis 3 w.r.t. xyz  are θ ϕ β α, ,= . Now a rotation around axis 
3 remains possible.
2- The spherical angles of the z -axis w.r.t. 123 are θ ϕ β π γ, ,= −

then the rotation of a quantum mechanical system is described  by :

Ψ Ψ→ =
− − − −

e e e P e
i J i J i J

R

i n Jz y zα β γ ε
.

.
 So 

d i

All irreducible representations of SO(3) can be constructed from the behavior of the spherical
harmonics Y l m ll

m θ ϕ,b g with − ≤ ≤  and for a fixed l :
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P Y Y D RR l
m

l
m

mm
l

m

θ ϕ θ ϕ, ,'
'

'
b g b g b gb g= ∑

D lb g is an irreducible representation of dimension 2 1l + . The character of D lb g is given by :

χ α α
α

α
αl im

m l

m l

k

l

e k
l

b gb g = = + =
+FHG
I
KJ

=−

=

=
∑ ∑1 2

1
2

2
0

cos
sin

sin

In the performed derivation α is the rotational angle around the z -axis. This expression is
valid for all rotations over an angle α because the classes of SO(3) are rotations around the
same angle around an axis with an arbitrary orientation.
Via the fundamental orthogonality theorem for characters one obtains the following
expression for the density function (which is normalized so that g 0 1b g = ) :

g α

α

α
b g = F
HG
I
KJ

sin2

2
2

2
With this result one can see that the given representations of SO(3) are the only ones : the
character of another representation χ '  would have to be ⊥  to the already found ones, so

χ α α α χ α α' sin 'b g b g2

2
0 0= ∀ ⇒ = ∀ . This is contradictory because the dimension of the

representation is given by χ ' 0b g. Because fermions have an half-odd integer spin the states

ΨS mS,  with S mS= = ±
1
2

1
2

 and  constitute a 2-dim. space which is invariant under rotations. A

problem arises for rotations over 2π  :

Ψ Ψ Ψ Ψ1
2

2

1
2

2
1
2

1
2

, , , ,m

i S

m

i m

m mS

z

S

S

S S

e e→ = = −
− −

π
π

However, in SO(3) : R Ez ,2π = . So here holds E → ±Π . Because observable quantities can
always be written as Φ Ψ Φ Ψ or A , and are bilinear in the states, they do not change sign
if the states do. If only one state changes sign the observable quantities do change.
The existence of these half-odd integer representations is connected with the topological
properties of SO(3) : the group is two-fold coherent through the identification R R E0 2= =π .

6. Applications to quantum mechanics

6.1-/ Vector model for the addition of angular momentum

If two systems have angular momentum quantum numbers j j1 2 and  the only possible values
for the total angular momentum are J j j j j j j= + + − −1 2 1 2 1 21, , , . This can be derived
from group theory as follows : from χ α χ α χ αj j

J
J

J

n1 2b g b g b gb g b g b g= ∑  follows :

D D D D Dj j j j j j j j1 2 1 2 1 2 1 21b g b g b g b g b g⊗ = ⊕ ⊕ ⊕+ + − −

The states can be characterized by quantum numbers in two ways : with j m j m1 1 2 2, , ,  and with
j j J M1 2, , , . The Clebsch-Gordan coefficients, for SO(3) called the Wigner coefficients, can

be chosen real, so :
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Ψ Ψ

Ψ Ψ

j j JM j j m m
m m

j j m m j j JM
JM

j m j m JM

j m j m JM

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 1 2 2

1 1 2 2

=

=

∑

∑

c h
c h

6.2-/ Irreducible tensor operators, matrix elements and selection
rules

Some examples of the behavior of operators under SO(3)

1. Suppose j = 0 : this given the identical representation with l j =1. This state is described by
a scalar operator. Because P A P AR R0

0 1
0

0b g b g− =  this operator is invariant, e.g. the Hamiltonien
of a free atom. Then holds : J M H JM MM JJ' ' ' '≈ δ δ .
2. A vector operator : A A A Ax y z= , ,d i . The cartesian components of a vector operator
transform equally  as the cartesian components of r  by definition. So for rotations around the
z -axis holds :

D R zα

α α
α α,

cos sin
sin cosd i =

−F

H
GG

I

K
JJ

0
0

0 0 1
The transformed operator has the same matrix elements w.r.t. P PR RΨ Φ and  :

P P A P P A RR R x R R x zΨ Φ Ψ Φ− = = +1 1 2 and χ αα , cosd i
According the equation for characters this means one can choose base operators which
transform like Yl

m θ ϕ,b g . These turn out to be the spherical components :

A A iA A A A A iAx y z x y+ −= − + = = −1
1

0
1

1
11

2
1
2

b g b g b gd i d i, ,

3. A cartesian tensor of rank 2 : Tij  is a quantity which transforms under rotations like
U Vi j , where U V and  are vectors. So Tij  transform like P T P T D R D RR ij R kl ki ij

kl

− = ∑1 b g b g, so like

D D D D D1 1 2 1 0b g b g b g b g b g⊗ = ⊕ ⊕
The 9 components can be split in 3 invariant subspaces with dimension
1 3 50 1 2D D Db g b g b ge j e j e j,  and . The new base operators are :

I. Tr T T T Tzzxx yy=
= + +e j . This transforms as the scalar U V. , so as D 0b g.

II. The 3 antisymmetric components A T Tz xy yx= −
1
2 d i , etc. These transform as the 

vector U V∧ , so as D 1b g.
III. The 5 independent components of the traceless, symmetric tensor S

=
 :

S T T Tij ij ji ij= + −
=

1
2

1
3d i e jδ Tr . These transform as D 2b g.
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Selection rules for dipole transitions

Dipole operators transform as D 1b g : for an electric dipole transfer is the operator er  for a

magnetic e
m

L S
2

2+d i. From the Wigner-Eckart theorem follows : J M A JM' ' κ
1 0b g =  except

D D D D D Dj J J J J'b g b g b g b g b g c h is a part of 1 1 1⊗ = ⊕ ⊕+ − .
This means that, J J J J J J J J' , , : ' '∈ + − = = ±1 1 1m r  or except J J'= = 0.

Landé-equation for the anomalous Zeeman splitting

According to Landé’s model the interaction between a magnetic moment with an external
magnetic field is determined by the projection of M  on J  because L S and  precede fast
around J . This can also be understood from the Wigner-Eckart theorem : from this follows
that the matrix elements from all vector operators show a certain proportionality. For an
arbitrary operator A follows :

α α
α α

α αjm A jm
jm A J jm
j j

jm J jm'
.

'=
+1 2b g


