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THE QUANTUM ERASER

This problem deals with a quantum process where the superposition of two probability
amplitudes leads to an interference phenomenon. The two amplitudes can be associated with
two quantum paths, as in a double slit interference experiment. We shall first show that these
interferences disappear if an intermediate measurement gives information about which path
has actually been followed. Next, we shall see how interference is « erased » by a quantum
device.

We consider a beam of neutrons, which are particles of charge zero and spin 1
2

,

propagating along the x  axis with velocity v . In all what follows, the motion of the neutrons
in space is treated classically as a uniform linear motion. Only the evolution of their spin
states is treated quantum mechanically.

1. Magnetic Resonance
The eigenstates of the z  component of the neutron spin are denoted n : +  and n : − . A
constant uniform magnetic field B B uz0 0=  is applied along the z  axis (uz  is the unit vector
along the z  axis). The magnetic moment of the neutron is denoted µ γn nS= , where γ n  is the

gyromagnetic ratio and ˆ
nS  the spin operator of the neutron.

1.1. What are the magnetic energy levels of a neutron in the presence of the field B0  ?
Express the result in term of ω γ0 0= − nB .

1.2. The neutron cross a cavity of length L  between times t t t L
v0 1 0 and = + . Inside this

cavity, in addition to the constant field B0 , a rotating field B t1b g is applied. The field B t1b g lies
in the x y,b g  plane and it has a constant angular frequency ω .

B t B t u t ux y1 1b g d i= +cos sinω ω (1)
Let Ψn t t n nb g b g= + + −+ −α α: :  be the neutron spin state at time t , and consider a neutron
entering the cavity at time t0 .

a) Write the equations of evolution for α± tb g when t t t0 1≤ ≤ . We set hereafter 
ω γ1 1= − nB .

b) Setting ( ) ( )
( )0

2
t t

i
t t e

ω

α β
−

± ±=
∓

, show that the problem reduces to a differential
system with constant coefficients.
c) We assume that we are near the resonance : ω ω ω− <<0 1, and that terms 
proportional to ω ω− 0b g  may be neglected in the previous equations. Check that, 
within this approximation, one has, for t t t0 1≤ ≤ ,

( ) ( ) ( )0
0 0cos sini tt t ie tωβ β θ β θ± ±= − ∓

∓

where θ
ω

=
−1 0

2
t tb g .

d) Show that the spin state at time t1 , when the neutron leaves the cavity, can be 
written as :
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( )
( ) ( ) ( )

( )
1 0

0 1
1 0

ˆ ,
t t

U t t
t t

α α
α α

+ +

− −

   
=   

   
(2)

where the matrix U t t0 1,b g  is
U t t

e ie
ie e

i i

i i0 1,
cos sin
sin cos

b g = −
−

F
HG

I
KJ

− −χ δ

δ χ

φ φ
φ φ

(3)

and where φ
ω

χ
ω

δ
ω

=
−

=
−

=
+1 1 0 1 0 1 0

2 2 2
t t t t t tb g b g b g,  and 

2. Ramsey Fringes
The neutrons are initially in the spin state n : − . They successively cross two identical

cavities of the type described above. This is called Ramsey configuration and it shown in Fig.
1. The same oscillating field B t1b g given by (1), is applied in both cavities. The modulus B1 of

this field is adjusted so as to satisfy the condition φ π
=

4
. The constant field B0  is applied

throughout the experimental setup. At the end of this setup, one measure the number of
outgoing neutrons which have flipped their spin and are in the final state n : + . This is done
for several values of  ω  in the vicinity of  ω ω= 0.

Fig. 1. : Ramsey’s configuration ; the role of the detecting atom A is specified in parts 3
and 4.

2.1. At time t0  a neutron enters the first cavity in the state n : − . What is its spin state, and
what is the probability of finding it in the state n : + , when it leaves the cavity ?

2.2. The same neutron enters the second cavity at time t t T T D
v

'0 1= + = which  where D  is

the distance between the two cavities the spin precesses freely around  B0 . What is the spin
state of the neutron at time t'0  ?
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2.3. Let t'1 be the time when the neutron leaves the second cavity : t t t t' '1 0 1 0− = − . Express

the quantity δ
ω

'
' '

=
+t t1 0

2
b g  in terms of  ω , ,t t T0 1 and . Write the transition matrix U t t' , '0 1b g

in the second cavity.
2.4. Calculate the probability P+  of detecting the neutron in the state n : +  after the second
cavity. Show that it is an oscillating function of ω ω0 −b gT . Explain why this result can be
interpreted as in interference process.
2.5. In practice, the velocities of the neutron have some dispersion around the mean value v .
This results in a dispersion in the time T  to get from one cavity to the other. A typical
experimental result giving the intensity of the outgoing beam in the state n : +  as a function

of the frequency ν ω
π

=
2

 of the rotating field B1 is shown in Fig.2.

Fig.2. : Intensity of the outgoing beam in the state n : +  as a  function of the frequency

ν ω
π

=
2

 for a neutron beam with some velocity dispersion.

(J.H.Smith et al., Phys. Rev. 108, 120, (1957)).

a) Explain the shape of this curve by averaging the previous result over the 
distribution.

dp T e dT
T T

b g
b g

=
−

−
1
2

0
2

22

τ π
τ

(We recall that cos cosΩ Ω
Ω

T dp T e Tb g b g b g
−∞

+∞
−z =

2 2

2
0

τ

 ).

b) In the above experiment, the value of the magnetic field was B0
22 57 10= × −, T and 

the distance D = 1 6, m. Calculate the magnetic moment of the neutron. Evaluate the 

average velocity v D
T0

0

=  and the velocity dispersion δ τv v
T

= 0

0

 of the neutron beam.
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c) Which optical interference experiment is the result reminiscent of ?
2.6. Suppose one inserts between the two cavities of Fig.1 a device which can measure the z
component of the neutron spin ( the principle of such detector is presented in the next
section). Determine the probability P+ +,  of detecting the neutron in the state n : +  between
the two cavities and the probability P− +,  of detecting the neutron in the state n : −  when it
leaves the second cavity. Check that one does not have P P P+ + + − += +, ,  and comment on this
fact.

3. Detection of the Neutron Spin State
In order to measure the spin of a neutron, one lets it interact during a time τ  with a

spin 1
2

 atom at rest. The atom’s spin operator is Sa . Let a : ±  be the two eigenstate of the

observable ˆ
azS . After the interaction between the neutron and the atom, one measure the spin

of the atom. Under certain conditions, as we shall see, one can deduce the spin state of the
neutron after this measurement.

3.1. Spin states of the atom.
Let a x: ±  be the eigenstates of ˆ

axS  and a y: ±  those of ˆ
ayS . Write a x: ±  and a y: ±  in

the basis a a: , :+ −m r . Express a y: ±  in terms of a x: ± .
3.2. We assume that the neutron-atom interaction does not affect the neutron trajectory. We
represent the interaction between the neutron and the atom by a very simple model. This
interaction is assumed to last a finite time τ  during which the neutron-atom interaction
Hamiltonian has the form

2 ˆ ˆˆ
nz ax

AV S S= ⊗ (4)

where A is a constant. We neglect the action of any external field, including B0 , during the
time τ .
Explain why ˆ ˆ and nzS V  commute. Give their common eigenstates and the corresponding
eigenvalues.
3.3. We hereafter assume that the interaction time τ  is adjusted in such a way that

Aτ π
=

2
Suppose the initial state of the system is

Ψ 0b g = + ⊗ +n a y: :
Calculate the final state of the system Ψ τb g . Answer the same question if the initial state is

Ψ 0b g = − ⊗ +n a y: :
3.4. We now suppose that the initial spin state is

Ψ 0b g c h= + + − ⊗ ++ −α αn n a y: : :

After the neutron-atom interaction described above, one measure the z  component ˆ
azS  of the

atom’s spin.
a) What results can one find, and with what probabilities ?
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b) After this measurement, what prediction can one make about the value of the z
component of the neutron spin ? Is it necessary to let the neutron interact with another 
measuring apparatus in order to know ˆ

nzS  once the value of ˆ
azS  is known ?

4. A Quantum Eraser
We have seen above that if one measures the spin state of the atom between the two

cavities, the interference signal disappears. In this section, we will show that it is possible to
recover n interference if the information left by the neutron on the detecting atom is “erased”
by an appropriate measurement.

A neutron, initially in the spin state :n − , is sent into the two-cavity system.
Immediately after the first cavity, there is a detecting atom of the type discussed above,
prepared in the spin state :a y+ . By assumption, the spin state of the atom evolves only
during the time interval τ  when it interacts with the neutron.

4.1. Write the spin state of the neutron-atom system when the neutron is :
a) just leaving the first cavity (time 1t ), before interacting with the atom ;
b) just after the interaction with the atom (time 1t τ+ ) ;
c) entering the second cavity (time 0't ) ;
d) just leaving the second cavity (time 1't ) .

4.2. What is the probability of finding the neutron in the state :n +  at time 1't  ? Does this
probability reflect an interference phenomenon ? Interpret the result.
4.3. At time 1't , Bob measures the z component of the neutron spin and Alice measures the

y component of the atom’s spin. Assume both measurements give 
2

+ . Show that the

corresponding probability reflects an interference phenomenon.
4.4. Is This result compatible with the conclusion of question 4.2. ?
4.5. In your opinion, which of the following three statements are appropriate, and for what
reasons ?

a) When, Alice performs a measurement on the atom, Bob sees at once an
interference appear in the signal he is measuring on the neutron.

b) Knowing the result obtained by Alice on each event, Bob can select a subsample of
his own events which displays an interference phenomenon.

c) The experiment corresponds to an interference between two quantum paths for the
neutron spin. By restoring the initial state of the atom, the measurement done by
Alice erases the information concerning which quantum path is followed by the
neutron spin, and allows interferences to reappear.

4.6. Alice now measures the component of the atom’s spin along an arbitrary axis defined by
the unit vector w . Show that the contrast of the interferences varies proportionally to sinη
where cos . zw uη = . Interpret the result.
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Solutions
1.1. The magnetic energy levels are : 0 0

1
2 2nE Bγ ω± = = ±∓

1.2. a) The Hamiltonian is : 0 1

1 0

ˆ
2

i t

i t

e
H

e

ω

ω

ω ω
ω ω

− 
=  

− 
. Therefore, the evolution equations

are
0 1

0 1

2 2

2 2

i t

i t

i e

i e

ω

ω

ω ωα α α

ω ωα α α

−
+ + −

+
− − +

 = +

 = − +


b) With the variables ( ) ( )
( )0

2
i t t

t t e
ω

β α
−

±

± ±= , we obtain

0

0

0 1

0 1

2 2

2 2

i t

i t

i e

i e

ω

ω

ω ω ωβ β β

ω ω ωβ β β

−
+ + −

− − +

− = − +
 − = +


c) If 0 1ω ω ω− << , we have, to good approximation, the differential system :

0

0

1

1

2

2

i t

i t

i e

i e

ω

ω

ωβ β

ωβ β

−
+ −

− +

 =

 =


whose solution is indeed

( ) ( ) ( ) ( ) ( )
01 0 1 0

0 0cos sin
2 2

i tt t t t
t t ie tωω ω

β β β± ±

− −
= − ∓

∓

d) Defining ( ) ( ) ( )1 1 0 1 0 1 0, ,
2 2 2

t t t t t tω ω ω
φ χ δ

− − +
= = =  we obtain

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

1 1 0 0

1 1 0 0

cos sin

cos sin

i ti i

i ti i

t e t e t i t e

t e t e t i t e

ωχ χ

ωχ χ

α β α φ α φ

α β α φ α φ

−− −
+ + + −

++
− − − +

  = = −  


 = = −  
and therefore

cos sinˆ
sin cos

i i

i i

e ie
U

ie e

χ δ

δ χ

φ φ
φ φ

− − −
=  

− 

1.2. We assume 
4
πφ =  ; the initial conditions are 

( )
( )

0

0

0

1

t

t

α

α
+

−

=


=
. At time 1t the state is

( ) ( )1
1 : :
2

i it ie n e nδ χ−Ψ = − + + −
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In other words 
( )

( )

1

1

2

2

i

i

iet

et

δ

χ

α

α

−

+

−

 −
=


 =

and 
1
2

P± =

2.2. We put DT
v

= . The neutron spin precesses freely between the two cavities during time

T , and we obtain

( )
( )

0

0

' 20

'
0 2

1
2

Tii

Tii

t ie e

t e e

ω
δ

ω
χ

α

α

−−
+

+
−

   −   =        

(5)

2.3. By definition, ' '
0 1 1 1 0 and 2t t T t t t T= + = − + , therefore the transition matrix in the second

cavity is
' '

' '

cos ' sin 'ˆ '
sin ' cos '

i i

i i

e ie
U

ie e

χ δ

δ χ

φ φ
φ φ

− − −
=  

− 

with ( ) ( )1 1 0 1 0' , '
2 2

t t t tω ω
φ φ χ χ

− −
= = = = . Only the parameter δ  is changed into

( ) ( )' '
1 0 1 03 2

'
2 2

t t t T tω ω
δ

+ + −
= =

2.4. The probability amplitude for detecting the neutron in state + after the second cavity is
obtained by (i) applying the matrix ˆ 'U  to the vector (5), (ii) calculating the scalar product of
the result with :n + . We get in this way

( )
0 0'

' 2 2
1

1
2

T Ti i
t ie ie

ω ω
χ δ δ χ

α
   − + + − − −   
   

+

 
= − −  

 

since ( ) ( )1 1 0 1 0 1, ' 3 2
2

t t T t t t t Tωδ χ ω δ χ ω+ = − = + − − + = +

we have

( )
0 0

1' 2 22
1 2

T i T i Ti tit e e e
ω ω ω ω

ω
α

− −     −− +     
     

+

 
= − +  

 
(6)

Therefore, the probability that the neutron spin has flipped in the two-cavity system is

( ) ( ) ( )2 0' 2
1 0

1 1 cos cos
2 2

T
P t T

ω ω
α ω ω+ +

−
= = + − =  

With the approximation 0 1ω ω ω− << , the probability for a spin flip in a single cavity is

independent of ω  and is equal to 1
2

. In contrast, the present result for two cavities exhibits a

strong modulation of the spin flip probability, between 1 (e.g. for 0ω ω= ) and 0 (e.g. for

( )0 Tω ω π− = ). This modulation results from interference process of the two quantum paths
corresponding respectively to :
• a spin flip in the first cavity, and no flip in the second one,
• no flip in the first cavity and a spin flip in the second one.
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Each of these paths has a probability 1
2

, so that the sum of the probability amplitudes (6) is

fully modulated.

2.5.a.  Since ( )2 1cos 1 cos
2 2
φ φ= + , the average probability distribution is

( ) ( )

( )
2 2

0
02 2

0 0
1 1cos cos

2 2 2
T

e T
ω ω τω ω

ω ω
−

−−
= + −   (7)

This form agree with the observed variation in ω  of the experimental signal. The central

maximum, which is located at 748.8 kHz
2
ω
π
= correspond to 0ω ω= . For that value, a

constructive interference appears whatever the neutron velocity. The lateral maxima and
minima are less peaked, however, since the position of a lateral peak is velocity dependent.
The first two lateral maxima correspond to ( )0 0 2Tω ω π− ± . Their amplitude is reduced,

compared to the central peak, by a factor 
2 2

2
0

2
Te
π τ

−

.
b. The angular frequency 0ω  is related to the magnetic moment of the neutron by

0 02 nBω µ=  which leads to 27 -19.65 10  J.Tnµ
−= × . The time 0T can be deduced from the

spacing between the central maximum and a lateral one. The first lateral maximum occurs at
0.77 kHz  from the resonance, hence 0 1.3 msT = . This correspond to an average velocity

-1
0 1230 m.sv = .

The ratio of intensities between the second lateral maximum and the central one is roughly

0.55. This is approximately equal to 
2 2

2
0

8
Te
π τ

−

and gives -1

0

0.087,  and 110 m.sv
T
τ δ≈ ≈ .

c. This experiment can be compared to a Young’s double slit interference experiment with
polychromatic light. The central fringe (corresponding to the peak at 0ω ω= ) remains bright,
but the contrast of the interferences decreases rapidly as one departs from the center. In fact,
the maxima for some frequencies correspond to minima for others.
2.6. The probability P++ is the product of the two probabilities : the probability of finding the

neutron in the state :n +  when it leaves the first cavity 1
2

p = 
 

 and, knowing that it is in

the state :n + , the probability of finding it in the same state when it leaves the second cavity
1
2

p = 
 

 ; this gives 1
4

P++ = . Similarly 1
4

P−+ = . The sum 1
2

P P++ −++ =  does not display any

interference, since one has measured in which cavity the neutron spin has flipped. This is very
similar to an electron double-slit interference experiment if one measures through which slit
the electron passes.
3.1. By definition :

( )

( )

1: : :
2
1: : :
2

a x a a

a y a i a

± = + ± −

± = + ± −

and these states are related to one another by
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( ) ( )1: 1 : 1 :
2

a y i a x i a x± =  ± + + −  ∓

3.2. The operators  and nz axS S commute since they act in two different Hilbert spaces ;

therefore ˆ ˆ, 0nzS V  =  .

The common eigenvectors of ˆ ˆ and nzS V and the corresponding eigenvalues are :

: :
2 2

: :
2 2

nz

nz

An a x S V

An a x S V

+ ⊗ ± = + = ±

− ⊗ ± = − = ∓

The operators ˆ ˆ and nzS V form a complete set of commuting operators as far as spin variables
are concerned.
3.3. Expanding in terms of the energy eigenstates, one obtains for ( )0 : :n a yΨ = + ⊗ +  :

( ) ( ) ( )2 21 : 1 : 1 :
2

A Ai i
n i e a x i e a x

τ τ

τ
− 

Ψ = + ⊗ + + + − − 
 

that is to say, for 
2 4
Aτ π

=  :

( ) ( )1 : : : : :
2

n a x a x n aτΨ = + ⊗ + + − = + ⊗ +

Similarly, if  ( )0 : :n a yΨ = − ⊗ + , then ( ) : :i n aτΨ = − ⊗ − .
Physically, this means that the neutron’s spin state does not change since it is an eigenstate of
V̂ , while the atom’s spin precesses around the x axis with angular frequency A . At time

2A
πτ = , it lies along the z axis.

3.4. If the initial state is ( )0 : : :n n a yα α+ −Ψ =  + + − ⊗ +  , the state after the
interaction is

( ) : : : :n a i n aτ α α+ −Ψ = + ⊗ + + − ⊗ −

The measurement of the z component of the atom’s spin gives 
2

+ , with probability 2α+

and state : :n a+ ⊗ +  after the measurement, or 
2

−  with probability 2α−  and state

: :n a− ⊗ −  after the measurement.
In both cases, after measuring the z component of the atom’s spin, the neutron spin state is
known : it is the same as that of the measured atom. It is not necessary to let the neutron
interact with another measuring apparatus in order to know the value of nzS .
4.1. The successive states are :
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step a 1
2

step b 1
2

step c 1
2

b g c h

b g c h

b g

− + ⊗ + + − ⊗ +

− + ⊗ + + − ⊗ −

− + ⊗ + + − ⊗ −
F
HG

I
KJ

−

−

− +FHG
I
KJ +FHG

I
KJ

ie n a y e n a y

ie n a ie n a

ie n a ie n a

i i

i i

i T i T

δ χ

δ χ

δ ω χ ω

: : : :

: : : :

: : : :
0 0
2 2

Finally, when the neutron leaves the second cavity (step d), the state of the system is :

Ψf

i T
i i

i T
i iie e n ie n a ie ie n e n a= − + − − ⊗ + + − + + − ⊗ −

L
N
MM

O
Q
PP

− +FHG
I
KJ −

+FHG
I
KJ1

2

0 0
2 2

δ ω
χ δ

χ ω
δ χ: : : : : :' 'c h c h

4.2. The probability of finding the neutron in state +  is the sum of the probabilities for
finding :
•  the neutron in state + and the atom in state +, i.e. the square of the modulus of the

coefficient of n a: :+ ⊗ + FHG
I
KJ

1
4

 in the present case ,

•  the neutron in state + and the atom in state - (probability 1
4

 again).

One gets therefore P+ = + =
1
4

1
4

1
2

 : There are no interferences since the quantum path leading

in the end to a spin flip of the neutron can be determined from the state of the atom.
4.3. One can expand the vectors a a y: :± ± on  :

Ψf

i T
i i

i T
i i

ie e n ie n a y a y

e ie n e n a y a y

=
− + − − ⊗ + + −

+ − + + − ⊗ + − −

L

N

MMMM

O

Q

PPPP

− +FHG
I
KJ −

+FHG
I
KJ −

1
2 2

0

0

2

2

δ ω
χ δ

χ ω
δ χ

: : : :

: : : :

'

'

c h c h

c hd i
The probability amplitude that Bob finds +

2
 along the z axis while Alice finds +

2
 along the

y axis is the coefficient of the term n a y: :+ ⊗ +  in the above expansion. Equivalently, the
probability is obtained by projecting the state onto n a y: :+ ⊗ + , and squaring. One obtains

P S S ie ie
T

nz ay

i T
i T

= =F
HG

I
KJ = − − =

−− + +F
HG

I
KJ − +

2 2
1
8

1
2 2

0 0
2 2

2

2 0, cos
'δ χ ω

χ δ ω ω ωb g b g

which clearly exhibits a modulation reflecting an interference phenomenon. Similarly, one
finds that

P S S
T

nz ay= = −F
HG

I
KJ =

−
2 2

1
2 2

2 0, sin
ω ωb g

which is also modulated.
4.4. This result is compatible with the result 4.2. Indeed the sum of the two probabilities

above is 1
2

 as in 4.2. If Bob does not know the result found by Alice, or if Alice does not

perform a measurement, which is equivalent from his point of view, Bob sees no
interferences. The interferences only arise for the joint probability P S Snz ay,d i .
4.5.
a) This first statement is obviously wrong. As seen in question 4.2., if the atom A is present,
Bob no longer sees oscillations in ω ω− 0b g of the probability for detecting the neutron in the
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state + . This probability is equal to 1
2

 whatever Alice does. Notice that if the statement were

correct, this would imply instantaneous transmission of information from Alice to Bob. By
seeing interferences appear, Bob would know immediately that Alice is performing an
experiment, even though she may be very far away.
b) This second statement is correct. If Alice and Bob put together all their results, and if they

select the subsample of events for which Alice finds +
2

, then the number of events for which

Bob also finds +
2

 varies like cos2 0

2
ω ω−F
HG

I
KJ

b gT  ; they recover interferences for this subset of

events. In the complementary set, where Alice has found −
2

, the number of Bob’s results

giving +
2

 varies like sin2 0

2
ω ω−F
HG

I
KJ

b gT . This search for correlations between events occurring

in different detectors is a common procedure, in particle physics for instance.
c) This third statement, although less precise but more picturesque than the previous one, is

nevertheless acceptable. The cos2 0

2
ω ω−F
HG

I
KJ

b gT  signal found in 1.2. can be interpreted as the

interference of the amplitudes corresponding to two quantum paths for the neutron spin which
is initially in the state n:−  ; either its spin flips in the first cavity, or it flips in the second one.
If there exists a possibility to determine which quantum path is followed by the system,
interferences cannot appear. It is necessary to « erase » this information, which is carried by
the atom, in order to observe « some » interferences. after Alice has measured the atom’s spin
along  the y axis, she has, in some sense « restored » the initial state of the system, and this
enables Bob to see some interferences. It is questionable to say that information has been
erased : one may feel that, on the contrary, extra information has been acquired. Notice that
the statement in the text does not specify in which physical quantity the interferences appear.
Notice also that the order of the measurements made by Alice and Bob has no importance,
contrary to what this third statement seems to imply.
4.6. Alice can measure along the axis w u uy z= +sin cosη η , in the y z,b gplane, for instance.
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a calculation similar to 4.3. leads to a probability 1
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(measurement along the z axis) there are no interferences. For η π
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generally, if Alice measures in the x y,b gplane, the contrast of the interferences, sinη , is
maximum.


