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1- INTRODUCTION

Specific and non specific interactions, inter- and intra-molecular:
- competition between enthalpy and entropy (binding energies versus probabilities)

Specific interactions play an important role in the biological cell:
- Enzymes

- catalytic RNA (ribozymes)

- transcription regulation

- iIRNA

How to mesure, quantify and model the process of specific recognition between
biomolecules?

Here: DNA hybridization at thermal equilibrium
The most studied and most quantitatively described example
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2- Experimental and theoretical approaches

Several measurement techniques

Principle: Measure the fraction of closed base pairs as a function of temperature

Several techniques for obtaining a signal that depends on the open or closed state:
UV absorption (often at 260 nm)
Fluorescence (intercalating dyes, FRET)
NMR

Raman diffusion

Pay attention to residual temperature dependencies

Changes in enthalpy AH can be measured by direct calorimetry



Absorbance at 260nm
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The need for theoretical analysis: what duplex is more stable at 37° C?
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Thermodynamic description of the equilibrium
between two states
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SUMMARY OF THE TWO-STATE MODEL
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COMPARISON TO EXPERIMENTAL DATA



Shape of ®(T): constancy of AH and AS
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Fig. 1. Melting curves for the 10-bp DNA duplex oligomer (ODN1, fgc = 0.50)
(fgc, fraction of G-Cbase pairs in the duplex) 5'-ATCGTCTGGA-3' (ata Giof 2 X
10~¢M) in solutions of sodium concentrations (left to right curves) 0.069, 0.12,
0.22,0.62, and 1.0 M. The thick black curves span arange of 6 from 0.15 t0 0.85,
where the data are the most accurate. The central vertical line through the
curves shows the temperature chosen.
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Fig. 2. Plots of In K vs. 1/T for the five Na+ concentrations (mol/liter) for
ODNI1.

Owczarzy et al, PNAS 25, 14480 (2003)
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LIMITATIONS of the model: (I) multiple transitions
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2 State Model
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Fraction folded

LIMITATIONS of the model: (1) kinetic effects
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Predicting hybridization and secondary structures of DNA and RNA
from the sequence:

MODEL WITH FIRST-NEIGHBOR INTERACTIONS

Under appropriate experimental conditions the representations
In K versus 1/T
1/T,, versus InCy

both allow to determine AH and AS with good precision.

Accordingly, 108 oligonucleotides of various size and sequence were analysed. 12
parameters were extracted by linear regression.

These studies allowed to derive a model to calculate AH et AS corresponding to DNA duplex
formation, as a function of sequence, of DNA concentration and of the concentration of

monovalent salt.



Quantitative agreement between experiment and theoretical prediction
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Figure 3 LExperimental Ty versus predicted Ty for 81 duplexes 6 to 24 bp in length
in solutions ranging from 0.01 to 0.5 M NaCl. Lincar regression gives a slope of 1.02.
intercept of 0.11. and R* = 0.97. The average absolute deviation is 2.3°C.

Santalucia et al, Annu. Rev. Biomol. Struct. 33, 415 (2004)



DNA double helix Hydrogen bonds between bases
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Main ideas behind the model

Closing the first basepair:
INITIATION

Formation of hydrogen bonds
(2 for A/T, 3 for G/C)

Closing the chain:
PROPAGATION
Hydrogen bonding + hydrophobic interaction

(depends on the 2 basepairs at the fork)



TABLE 1 Nearest-neighbor thermodynamic parameters for DNA
Watson-Crick pairs in 1 M NaCl*

12 parameters

Propagation AH" AS° AG3,

sequence (keal mol™!) 103 f(%:l'/)(r:ol K) (keal mol™)

AA/TT —7.6 —-21.3 —1.00

AT/TA —7.2 —20.4 —0.88

TA/AT —7.2 —-21.3 —0.58

CA/GT —8.5 —22.7 —1.45

GT/CA —8.4 —22.4 —1.44 10 different
CT/GA ~7.8 210 —1.28 pairs
GA/CT —8.2 —22.2 —1.30

CG/GC —10.6 —27.2 —2.17

GC/CG —9.8 —24.4 —2.24

GG/CC —8.0 —19.9 —1.84

Initiation +0.2 —5.7 +1.96 —_— 11
Terminal AT penalty +2.2 +6.9 +0.05 — 12
Symmetry correction 0.0 —14 +0.43

“The slash indicates the sequences are given in antiparallel orientation. (e.g.. AC/TG means

5'-AC-3" is Watson-Crick base paired with 3’-TG-3"). The symmetry correction applies to only

self-complementary duplexes. The terminal AT penalty is applied for each end of a duplex that

has a terminal AT (a duplex with both end closed by AT pairs would have a penalty of 4-0.1

keal/mol for AG3,).

23 kcal/mol =1 eV =40 kT30

Santalucia et al, Annu. Rev. Biomol. Struct. 33, 415 (2004)



Exemple: calculation of AG=AH-TAS at 37° C

)

@] i _ O @] O '®)
AG37(t0tal) - AC'37initiation + AG“7 symmetry + ZAGW stack + AGA'l“[erminal

5'-CGTTGA-3| = AG; + AG;

37 initiation 37 symmetry

3'-GCAACT-% 4+ CG+GT+TT + TG 4+ GA + AT erminal
GC CA AA AC (T

AG5, (predicted) = 1.96 +-0 — 2.17 — 1.44 — 1.00 — 1.45 — 1.30 4+ 0.05
AG3, (predicted) = —5.35 kcal mol™".

23 kcal/mol =1 eV =40 kT30



Effect of mispairing

5""GGACTGACG-B’ = initiation 4+ symmetry + GG + GA + AC
3-CCTGGCTGC-5' cC CT TG

+CT 4+ CG+ GA+ AC +CG
GG GT CT TG GC
AG3, (predicted) = 4+1.96 +0 —1.84 — 1.30 — 1.44 — 0.32 — 0.47
—1.30 —1.44 —-2.17
— —8.32 kecal mol™".



TABLE 2 Nearest-neighbor AGS; increments (keal mol~") for
internal single mismatches next to Watson-Crick pairs in 1 M NaCl*

. Y

Propagation

sequence X A C G T

GX/CY A 0.17 0.81 —0.25 WC
C 0.47 0.79 WC 0.62
G —0.52 WC —1.11 0.08
T WC 0.98 —0.59 0.45

CX/GY A 0.43 0.75 0.03 WC
C 0.79 0.70 WC 0.62
G 0.11 WC —0.11 —0.47
T wWC 0.40 —0.32 —0.12

AX/ITY A 0.61 0.88 0.14 WC
C 0.77 1.33 WC 0.64
G 0.02 WC —0.13 0.71
T WC 0.73 0.07 0.69

TX/AY A 0.69 0.92 0.42 WC
C 1.33 1.05 WC 0.97
G 0.74 WC 0.44 0.43
T wWC 0.75 0.34 0.68

*WC indicates a Watson-Crick pair, which is given in Table |. Error bars and AH® and AS°®
parameters are provided in the original references.



Parameters for single-strand loops

TABLE 4 AG$, increments (kcal mol~") for length dependence of
loop motifs in 1 M NaCl*

Loop size®”  Internal loops®  Bulge loops'  Hairpin loops®

1 — 4.0 —
2 () 29 —
3 3.2 3.1 3.5
4 3.6 32 3.5
5 4.0 33 33
6 44 35 40
7 4.6 37 42
8 4.8 39 43
9 4.9 4.1 45

10 4.9 43 46

12 5.2 45 5.0

14 5.4 48 5.1

16 5.6 5.0 53

18 5.8 52 55

20 5.9 53 57

25 6.3 5.6 6.1

30 6.6 5.9 6.3

YA dash indicates that the loop length is not allowed. All loop AH® parameters are
assumed to equal zero. The loop AS” increment may be calculated from: AS® = AGS;
x 1000/310.15.

"The increments for loop lengths not shown may be calculated with Equation 7 (see text).
“For asymmetric internal loops an additional correction must be applied (see text).

dFor bulge loops with one nucleotide, the intervening base pair stack must be added.
“For hairpin loops of length 3 or 4, special sequence dependent triloop and tetraloop
corrections must be applied (see supplementary material).

‘Internal loops of two are calculated using the mismatch nearest neighbor parameters (see

Table 2).
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General result: the molecular beacon exhibits higher specificity.

Why?
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