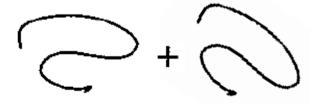
# **DNA** hybridization

- **1** Introduction
- 2 Experimental and theoretical studies
- 3 Molecular beacons

# **1- INTRODUCTION**

Specific and non specific interactions, inter- and intra-molecular:

- competition between enthalpy and entropy (binding energies versus probabilities)


Specific interactions play an important role in the biological cell:

- Enzymes
- catalytic RNA (ribozymes)
- transcription regulation
- iRNA

- ...

How to mesure, quantify and model the process of specific recognition between biomolecules?

Here: DNA hybridization at thermal equilibrium The most studied and most quantitatively described example



Single-stranded DNA

Hybridization

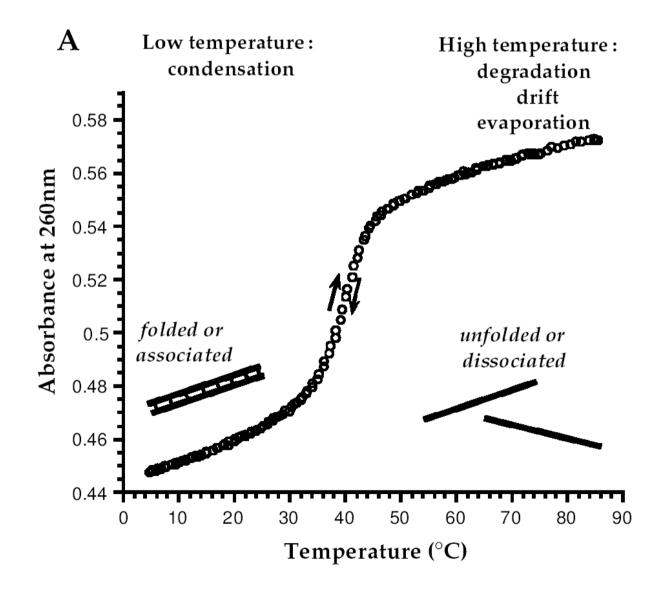


Melting

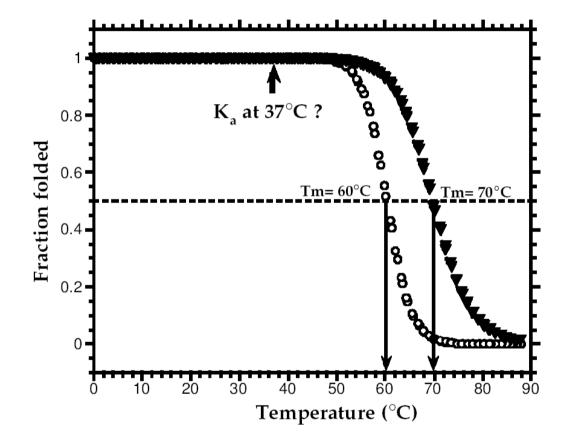
Double-stranded DNA

# 2- Experimental and theoretical approaches

#### Several measurement techniques


Principle: Measure the fraction of closed base pairs as a function of temperature

Several techniques for obtaining a signal that depends on the open or closed state: UV absorption (often at 260 nm) Fluorescence (intercalating dyes, FRET) NMR Raman diffusion


Pay attention to residual temperature dependencies

Changes in enthalpy  $\Delta H$  can be measured by direct calorimetry

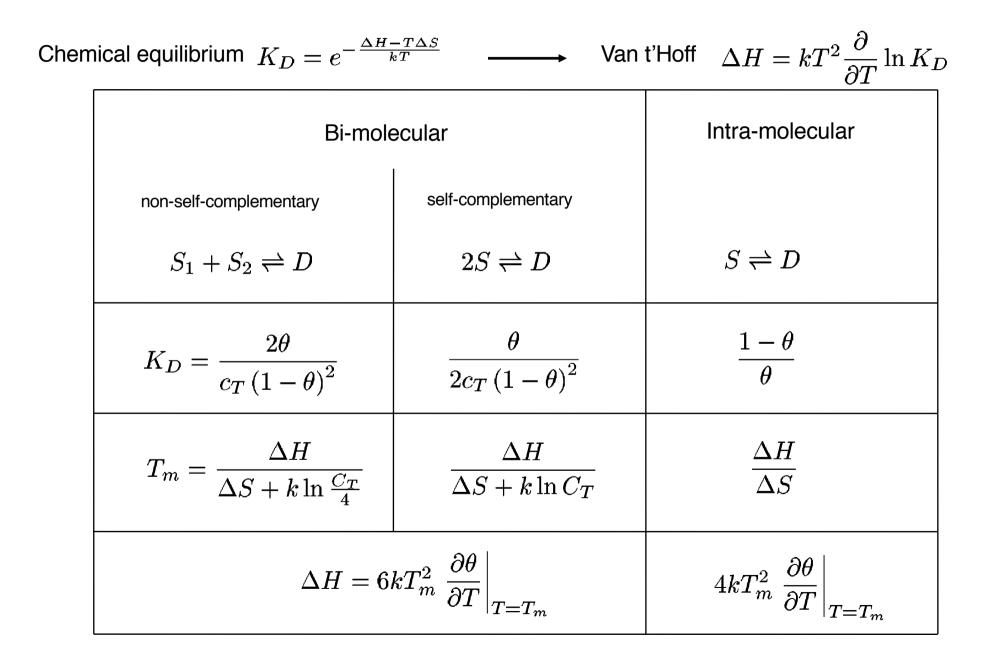
# A typical measurement



#### The need for theoretical analysis: what duplex is more stable at 37° C?



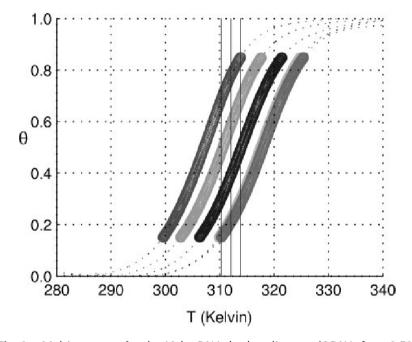
Thermodynamic description of the equilibrium between two states

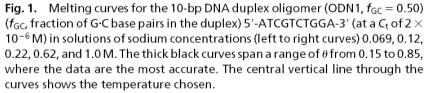

= 200+

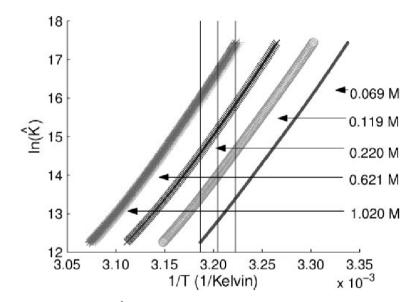
Single-stranded DNA

Double-stranded DNA

IN SOLUTION


## SUMMARY OF THE TWO-STATE MODEL



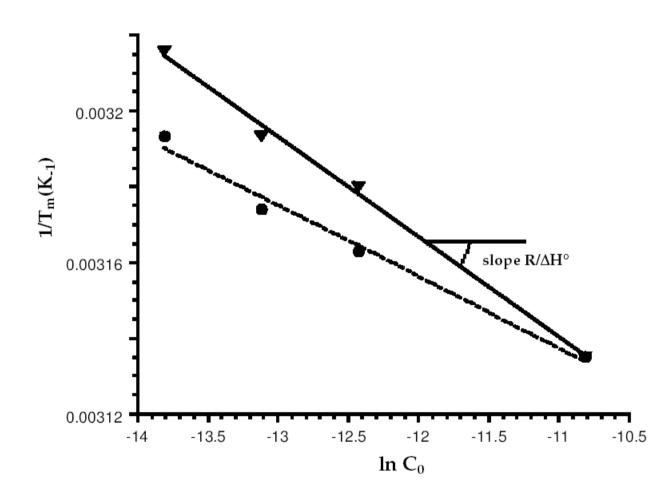


# COMPARISON TO EXPERIMENTAL DATA

#### Shape of $\Theta(T)$ : constancy of $\Delta H$ and $\Delta S$

5'-ATCGTCTGGA-3' 3'-TAGCAGACCT-5'





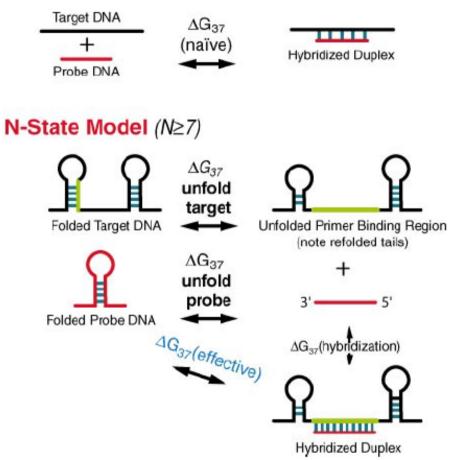



**Fig. 2.** Plots of  $\ln \hat{K}$  vs. 1/T for the five Na<sup>+</sup> concentrations (mol/liter) for ODN1.

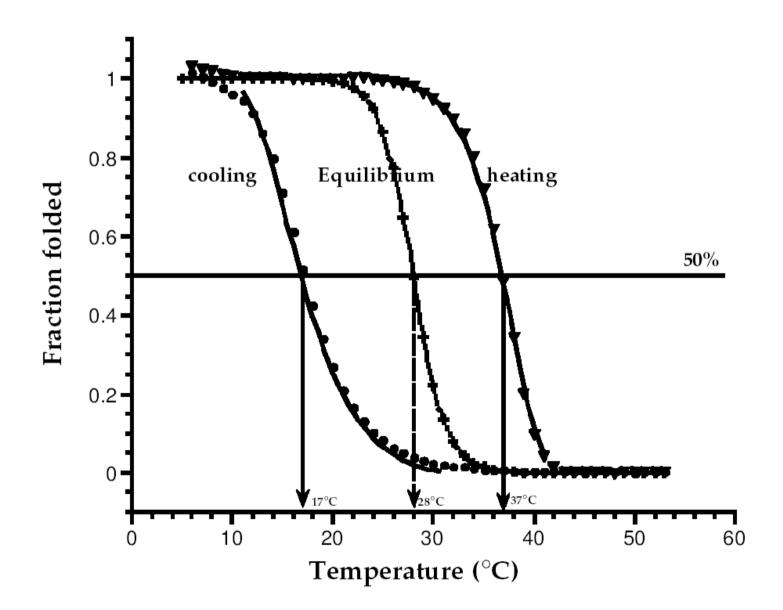
Owczarzy et al, PNAS 25, 14480 (2003)

Effect of the concentration

 $S_1 + S_2 \rightleftharpoons D$ 




Mergny et Lacroix, Oligonculeotides 13, 515 (2003)


## LIMITATIONS of the model: (I) multiple transitions



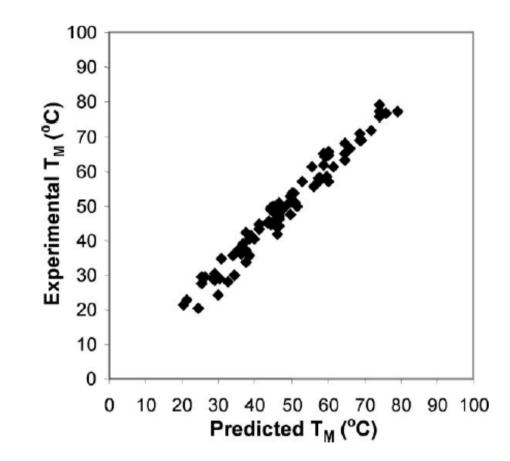
#### 2 State Model



LIMITATIONS of the model: (II) kinetic effects



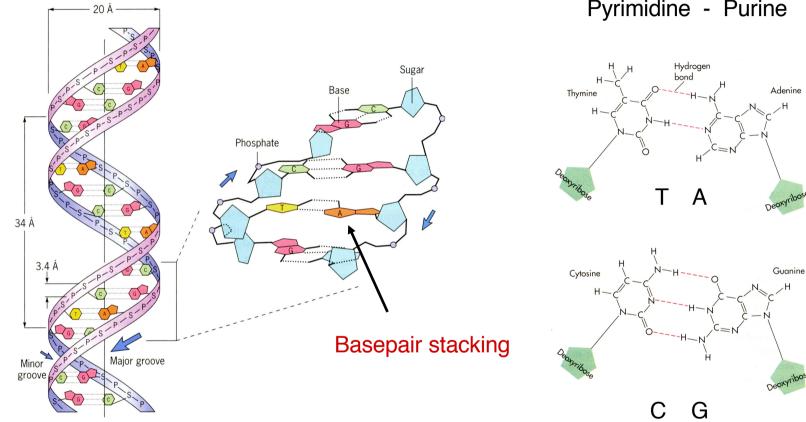
Predicting hybridization and secondary structures of DNA and RNA from the sequence:


## MODEL WITH FIRST-NEIGHBOR INTERACTIONS

 $\begin{array}{ccc} \text{Under appropriate experimental conditions the representations} & & \text{In K} & \text{versus} & 1/T & \\ & & 1/T_m & \text{versus} & \text{In } C_T & \\ & \text{both allow to determine } \Delta H \text{ and } \Delta S \text{ with good precision.} \end{array}$ 

Accordingly, 108 oligonucleotides of various size and sequence were analysed. 12 parameters were extracted by linear regression.

These studies allowed to derive a model to calculate  $\Delta H$  et  $\Delta S$  corresponding to DNA duplex formation, as a function of sequence, of DNA concentration and of the concentration of monovalent salt.

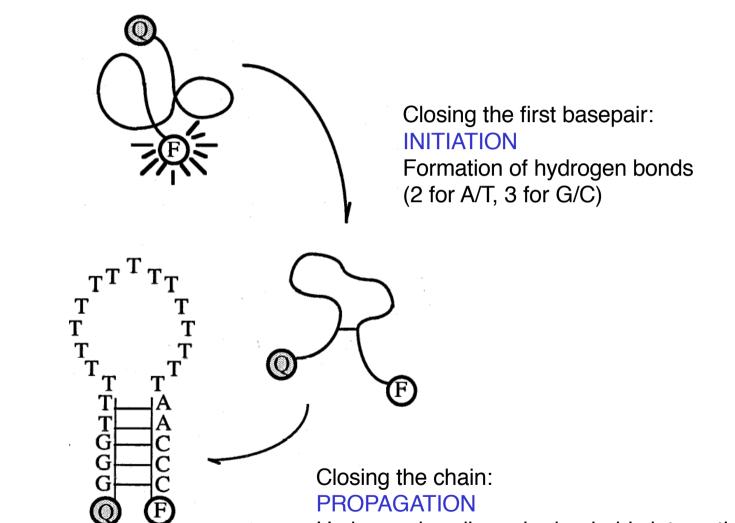

Quantitative agreement between experiment and theoretical prediction



**Figure 3** Experimental  $T_M$  versus predicted  $T_M$  for 81 duplexes 6 to 24 bp in length in solutions ranging from 0.01 to 0.5 M NaCl. Linear regression gives a slope of 1.02, intercept of 0.11, and  $R^2 = 0.97$ . The average absolute deviation is 2.3°C.

SantaLucia et al, Annu. Rev. Biomol. Struct. 33, 415 (2004)

#### DNA double helix




Genetic information: ... GTCAGTAAC...

#### Hydrogen bonds between bases

Pyrimidine - Purine

Main ideas behind the model



Hydrogen bonding + hydrophobic interaction

(depends on the 2 basepairs at the fork)

| Propagation<br>sequence | $\Delta { m H}^{\circ}$ (kcal mol $^{-1}$ ) | $\begin{array}{l} \Delta S^{\circ} \\ (e.u.) = \\ 10^{-3} \text{ kcal/(mol K)} \end{array}$ | $\Delta { m G}_{37}^\circ$ (kcal mol $^{-1}$ ) |              |
|-------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|--------------|
| AA/TT                   | -7.6                                        | -21.3                                                                                       | -1.00                                          | -            |
| AT/TA                   | -7.2                                        | -20.4                                                                                       | -0.88                                          |              |
| TA/AT                   | -7.2                                        | -21.3                                                                                       | -0.58                                          |              |
| CA/GT                   | -8.5                                        | -22.7                                                                                       | -1.45                                          |              |
| GT/CA                   | -8.4                                        | -22.4                                                                                       | -1.44                                          | 10 different |
| CT/GA                   | -7.8                                        | -21.0                                                                                       | -1.28                                          | pairs        |
| GA/CT                   | -8.2                                        | -22.2                                                                                       | -1.30                                          |              |
| CG/GC                   | -10.6                                       | -27.2                                                                                       | -2.17                                          |              |
| GC/CG                   | -9.8                                        | -24.4                                                                                       | -2.24                                          |              |
| GG/CC                   | -8.0                                        | -19.9                                                                                       | -1.84                                          |              |
| Initiation              | +0.2                                        | -5.7                                                                                        | +1.96                                          | 11           |
| Terminal AT penalty     | +2.2                                        | +6.9                                                                                        | +0.05                                          | 12           |
| Symmetry correction     | 0.0                                         | -1.4                                                                                        | +0.43                                          |              |

**TABLE 1** Nearest-neighbor thermodynamic parameters for DNAWatson-Crick pairs in 1 M NaCl<sup>a</sup>

<sup>a</sup>The slash indicates the sequences are given in antiparallel orientation. (e.g., AC/TG means 5'-AC-3' is Watson-Crick base paired with 3'-TG-5'). The symmetry correction applies to only self-complementary duplexes. The terminal AT penalty is applied for each end of a duplex that has a terminal AT (a duplex with both end closed by AT pairs would have a penalty of +0.1 kcal/mol for  $\Delta G_{37}^{\circ}$ ).

12 parameters

# Exemple: calculation of $\Delta G = \Delta H - T \Delta S$ at 37° C

$$\Delta G_{37}^{\circ}(\text{total}) = \Delta G_{37 \text{ initiation}}^{\circ} + \Delta G_{37 \text{ symmetry}}^{\circ} + \Sigma \Delta G_{37 \text{ stack}}^{\circ} + \Delta G_{\text{AT terminal}}^{\circ}$$

$$5' \text{-CGTTGA-3'} = \Delta G_{37 \text{ initiation}}^{\circ} + \Delta G_{37 \text{ symmetry}}^{\circ}$$

$$3' \text{-GCAACT-5'} + CG + GT + TT + TG + GA + AT_{\text{terminal}}$$

$$GC \quad CA \quad AA \quad AC \quad CT$$

$$\Delta G_{37}^{\circ}(\text{predicted}) = 1.96 + 0 - 2.17 - 1.44 - 1.00 - 1.45 - 1.30 + 0.05$$

$$\Delta G_{37}^{\circ}(\text{predicted}) = -5.35 \text{ kcal mol}^{-1}.$$

23 kcal/mol = 1 eV = 40 kT<sub>300K</sub>

#### Effect of mispairing

 $5' - GGAC \underline{T}GACG - 3' = initiation + symmetry + GG + GA + AC$   $3' - CCTG \underline{G}CTGC - 5' CC CT TG$   $+ C\underline{T} + C\underline{G} + GA + AC + CG$   $G\underline{G} G\underline{T} CT TG GC$   $\Delta G_{37}^{\circ} (predicted) = +1.96 + 0 - 1.84 - 1.30 - 1.44 - 0.32 - 0.47$  -1.30 - 1.44 - 2.17 $= -8.32 \text{ kcal mol}^{-1}.$ 

| Propagation | Y |       |      |       |       |  |  |
|-------------|---|-------|------|-------|-------|--|--|
| sequence    | Χ | Α     | С    | G     | Т     |  |  |
| GX/CY       | А | 0.17  | 0.81 | -0.25 | WC    |  |  |
|             | С | 0.47  | 0.79 | WC    | 0.62  |  |  |
|             | G | -0.52 | WC   | -1.11 | 0.08  |  |  |
|             | Т | WC    | 0.98 | -0.59 | 0.45  |  |  |
| CX/GY       | А | 0.43  | 0.75 | 0.03  | WC    |  |  |
|             | С | 0.79  | 0.70 | WC    | 0.62  |  |  |
|             | G | 0.11  | WC   | -0.11 | -0.47 |  |  |
|             | Т | WC    | 0.40 | -0.32 | -0.12 |  |  |
| AX/TY       | А | 0.61  | 0.88 | 0.14  | WC    |  |  |
|             | С | 0.77  | 1.33 | WC    | 0.64  |  |  |
|             | G | 0.02  | WC   | -0.13 | 0.71  |  |  |
|             | Т | WC    | 0.73 | 0.07  | 0.69  |  |  |
| TX/AY       | А | 0.69  | 0.92 | 0.42  | WC    |  |  |
|             | С | 1.33  | 1.05 | WC    | 0.97  |  |  |
|             | G | 0.74  | WC   | 0.44  | 0.43  |  |  |
|             | Т | WC    | 0.75 | 0.34  | 0.68  |  |  |

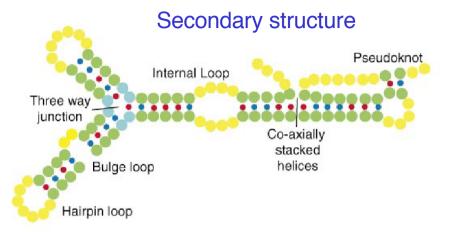
**TABLE 2** Nearest-neighbor  $\Delta G_{37}^{\circ}$  increments (kcal mol<sup>-1</sup>) forinternal single mismatches next to Watson-Crick pairs in 1 M NaCl<sup>a</sup>

<sup>a</sup>WC indicates a Watson-Crick pair, which is given in Table 1. Error bars and  $\Delta H^{\circ}$  and  $\Delta S^{\circ}$  parameters are provided in the original references.

#### Parameters for single-strand loops

**TABLE 4** $\Delta G_{37}^{\circ}$  increments (kcal mol<sup>-1</sup>) for length dependence ofloop motifs in 1 M NaCl<sup>a</sup>

| Loop size <sup>b</sup> | Internal loops <sup>e</sup> | Bulge loops <sup>d</sup> | Hairpin loops <sup>e</sup> |
|------------------------|-----------------------------|--------------------------|----------------------------|
| 1                      | _                           | 4.0                      | _                          |
| 2                      | (f)                         | 2.9                      | _                          |
| 3                      | 3.2                         | 3.1                      | 3.5                        |
| 4                      | 3.6                         | 3.2                      | 3.5                        |
| 5                      | 4.0                         | 3.3                      | 3.3                        |
| 6                      | 4.4                         | 3.5                      | 4.0                        |
| 7                      | 4.6                         | 3.7                      | 4.2                        |
| 8                      | 4.8                         | 3.9                      | 4.3                        |
| 9                      | 4.9                         | 4.1                      | 4.5                        |
| 10                     | 4.9                         | 4.3                      | 4.6                        |
| 12                     | 5.2                         | 4.5                      | 5.0                        |
| 14                     | 5.4                         | 4.8                      | 5.1                        |
| 16                     | 5.6                         | 5.0                      | 5.3                        |
| 18                     | 5.8                         | 5.2                      | 5.5                        |
| 20                     | 5.9                         | 5.3                      | 5.7                        |
| 25                     | 6.3                         | 5.6                      | 6.1                        |
| 30                     | 6.6                         | 5.9                      | 6.3                        |


<sup>a</sup>A dash indicates that the loop length is not allowed. All loop  $\Delta H^{\circ}$  parameters are assumed to equal zero. The loop  $\Delta S^{\circ}$  increment may be calculated from:  $\Delta S^{\circ} = \Delta G^{\circ}_{37} \times 1000/310.15$ .

<sup>b</sup>The increments for loop lengths not shown may be calculated with Equation 7 (see text). <sup>c</sup>For asymmetric internal loops an additional correction must be applied (see text).

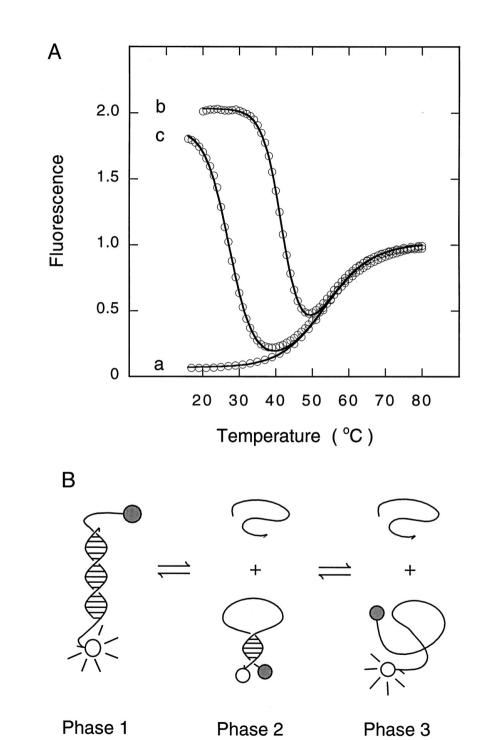
<sup>d</sup>For bulge loops with one nucleotide, the intervening base pair stack must be added.

<sup>e</sup>For hairpin loops of length 3 or 4, special sequence dependent triloop and tetraloop corrections must be applied (see supplementary material).

<sup>f</sup>Internal loops of two are calculated using the mismatch nearest neighbor parameters (see Table 2).



#### RNA: catalytic activities, regulation

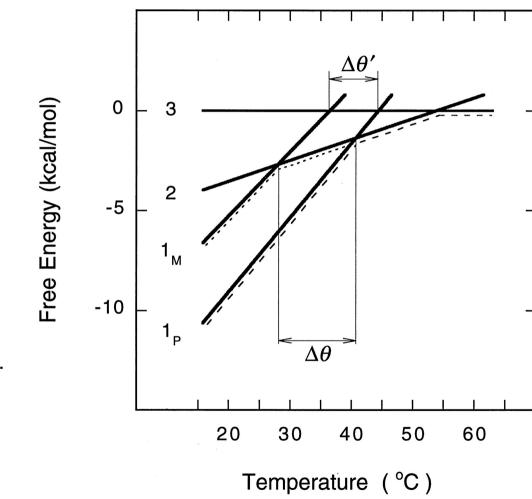

WEB servers for calculating  $\Delta H$ ,  $\Delta S$ , T<sub>m</sub> and secondary structures:

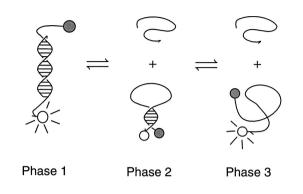
mfold, hyther, vienna

« Enhanced specificity of molecular beacon probes »

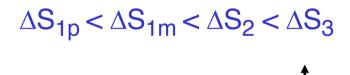
$$\begin{array}{cccc}
A & A & A \\
A & & A \\
C & C \\
C & C \\
C & C \\
C \\
C \\
C \\
C \\
C \\
G \\
C \\
G \\
C \\
C \\
G \\
F \\
Q
\end{array}$$

Bonnet, Tyagi, Libchaber and Kramer, PNAS 96, 6171 (1999)





# General result: the molecular beacon exhibits higher specificity. Why?




Energy diagram derived from measured thermodynamic parameters:

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$ 





 $\Delta H_{1p} < \Delta H_{1m} < \Delta H_2 < \Delta H_3$ 



Zero-energy state.