ESPCI Paris Biophysics 3rd year lecture 2020

Regulatory networks

1 Mechanisms of regulation
2 Introduction to lactose regulation in E.coli
3 Modelling regulatory networks

4 Race to operator sequence



Part 1

Mechanisms of regulation



Different possibilies to adapt the metabolic activities of a cell
to its environment

DNA — MRNA — Protein
Transcription Translation
initiation and Post-translational modifications,
attenuation protein folding,
assembly,
degradation

Procaryotes: regulation at the level of transcription

Eucaryotes: several different mechanisms



Transcription and translation of genes in bacteria

Ribosome

DNA

=itk RNA Polymerase 0P

E. coli:  procaryot, uni-cellular organism, one chromosome of 4.5 Mb,
~2000 genes, under standard conditions about 100 genes are
actively transcribed



Part 2

Introduction to lactose regulation in E.coli



The lactose operon r
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B-galactosidase catalyses the hydrolosis of
lactose to galactose and glucose:

transcription.
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This complex must bind to the
activator site A for efficient

O2 et O3 are auxiliaire operators. O3 regulates

itself.

Binding of the repressor to an operator site inhibits
the transcription. O1 is the major operator,
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Three levels of organisation
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Reaction of 3-galactosidase and X-Gal

Color changes from transparent to indigo blue

X-Gal: C,,H;sBrCINOg

Parallel induction of 3-galactosidases
and permeases

2 possible states for each bacterium

Maintenance concentration

Multiplication of a bacterium
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Part 3

Modelling regulatory networks



Simulating the dynamics of a regulatory network

5 concentrations:
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dt
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Vilar, Guet, Leibler, J. Cell Biol. 161, 471 (2003)




Eqgs 1-4 Numerical solution assuming

Resultats stochastical events

Concentrations -> discret numbers
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Requirements for good functioning of a gene regulatory network
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Part 4

Race to operator sequence



Thermodynamics |
Specific interaction between repressor and DNA

Ka
R ADN \_?\ R‘AD N Keq=Kaka=10"10 M

Order of magnitude
Volume of E.Colicell: ~1 ym3

A repressor and an operator in the bacterium: cg=Capy = 10° M

Probability of operator occupation:
[RIDNAJ/ [DNA] = [R] / Koq =109/101°=10 ->P=90%

AG =In 1010~ - 23 kT

Mesurement of K., by electrophoresis
Putting a DNA repressor mix in a gel followed by rapid migration. The equilibrium state is
conserved, the mesh of the gel inhibits dissociation of the DNA-repressor complex.



Thermodynamics |l
Non-specific interaction between repressor and DNA

Keg =10 4M

Six orders of magnitude weaker than the specific interaction

AG =AH-TAS =In10*4=-9.2KkT

This interaction is of electrostatic origin and exhibits dominantly an entropic character
Protein binding chases away counter-ions.

WHAT IS THE BIOLOGICAL UTILITY OF THIS
NON SPECIFIC INTERACTION?



Kinetics

Measuring k, of the specific interaction:

Mix repressor and operator DNA-32P at t=0.
Withdraw samples at different time points t.
Adsorbing the complexes by the repressor to
a nitrocellulose filter.

Wash the filter and measure its radioactivity
with a phospho-imager. A

k=101 M-1s-"

|Og1o (ka)
O
(@]

1.5 1.0
log1q [KCI]

How does the repressor rapidly finds the operator sequence ?
(typical search time: a few seconds in E. coli)



Searching the operator by 3D diffusion
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Operator site fixed at the centre of a sphere, 3D diffusion equation, concentration is constant far

from the centre, viscosity of water, repressor as a sphere of diameter b

non-specific interaction between repressor and DNA.

5 nm, without
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Debye-Smoluchowsky limit

Operator site fixed at the centre of a sphere, 3D diffusion equation, concentration is constant far
from the centre, viscosity of water, repressor as a sphere of diameter b=5 nm, without
non-specific interaction between repressor and DNA.

KT/(6minb) = 40 yum?/s
\
k,=4nDb=2/3kT/m=10°M1s"

Represents an upper limit = the process of 3D diffusion is too slow



Non-specific interaction between repressor and DNA

Keg =10 4M

Six orders of magnitude weaker than the specific interaction

Nevertheless important since the number of sites is huge:
Np,= 4.5 10 ¢ for the E.Coli DNA.

—> the probability to find a repressor on the DNA amounts to 99%



Research by 1D diffusion W 4
nonspecific **,
binding ',.1‘

S e\

sliding length /

The 1D diffusion constant is ~100 times smaller than the 3D diffusion constant.

Major problem: I oc t172
>The search time t increases rapidly with DNA size: 1 oc |

For =10 ym (33kb) and D,p=0.5 pm?/s > t =132 /D;p =200 s

Predication for E.coli : 100 evenly distributed repressors take ~200 s to inhibit transcription

\ \

Typical value Too slow



Diffusion of proteins on DNA: single molecule fluorescence
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Trajectories of two hOgg1 proteins
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A conserved histidine at position 270

causes the pH dependence.



Research by combined 3D and 1D diffusion

Berg, Winter et van Hippel (BWH), Biochemistry 20, 6929 (1981)
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BWH theory Ka T A
nonspecific ",\ Ky
Mixed 1D and 3D diffusion binding %, dissociation
%

sliding length |/

A 1D random walk:

Typical duration: kq s = 100 ms (measured value)
Explored DNA length: Ig= (D1p / Kgpns)2 =200 nm = 4 |, (D1p=0.5 pm?/s)

After a duration T >>kg s :
A number of ky ,s T random walks occurred

Explored DNA length: L(T) = T (D4p Kg ns)'2 linear in time!
Search time
T(L) =L/ (Dqp kg pns)'’?, for L=10 um (33kb) we obtain T=5s
(cp. pure 1D diffusion: T = 200 s)

This strategy is used by many proteins to find a specific binding site
on DNA or RNA

“research engine” for the genomics database in the cell



SUMMARY

The Lac operon of the E.coli bacterium as a simple illustration of the
complexity of regulation networks in the biological cell

Transcriptional regulation
Simulation of regulation networks
Coupling diffusion and inter-molecular interactions

Mechanism of Berg, Winter and van Hippel describing the search for
a specific sequence in DNA and RNA.



