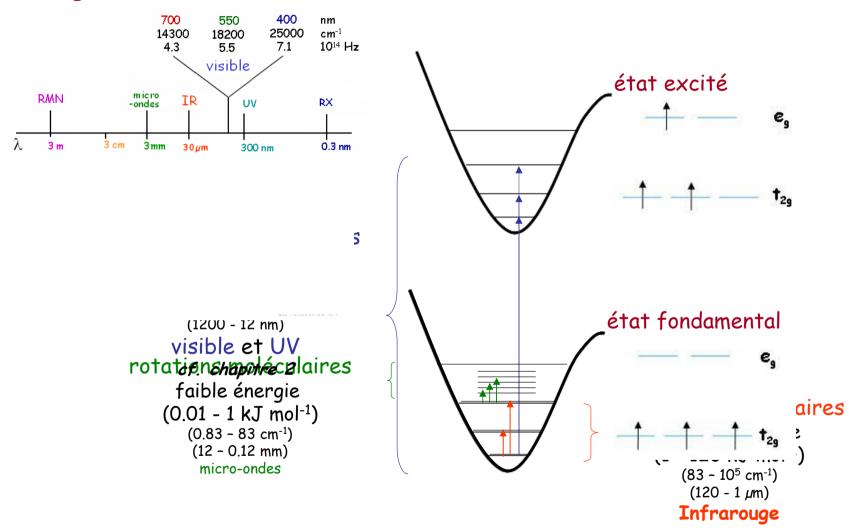

Spectroscopie infrarouge

I - Spectroscopies d'absorption


1. Généralités

Reposent sur les interactions entre la matière et la lumière absorption : excitation après absorption d'un quanta d'énergie hy transitions entre deux niveaux d'énergie

Energies des transitions

Absorptions vibrationnelles exprimées en nombre d'onde v (cm⁻¹)

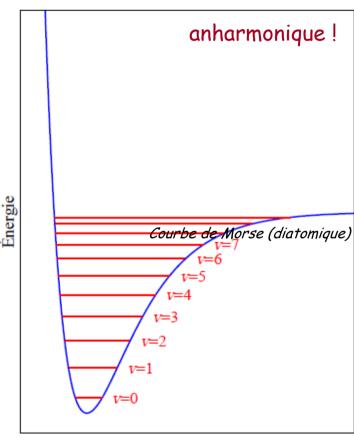
I - 2. modèle du vibrateur : oscillateur harmonique

$$\bar{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

Molécule AB

$$\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$$

Vc=c en cm⁻¹


k en dynes.cm⁻¹ (1N = 10⁵ dynes) μ en g (μ / 6.023 10²³)

 $C = 3.10^{10} \text{ cm.s-1}$

Absorption: V = hv

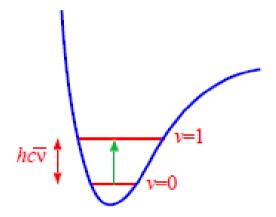
Mécanique classique : infinité de solution

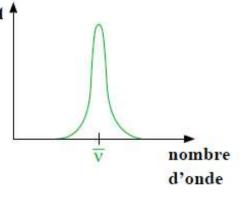
Mécanique quantique : quantification de l'énergie ⇒ niveaux discrets d'énergie vibrationnelle

Déplacement
$$(x = R - R_e)$$

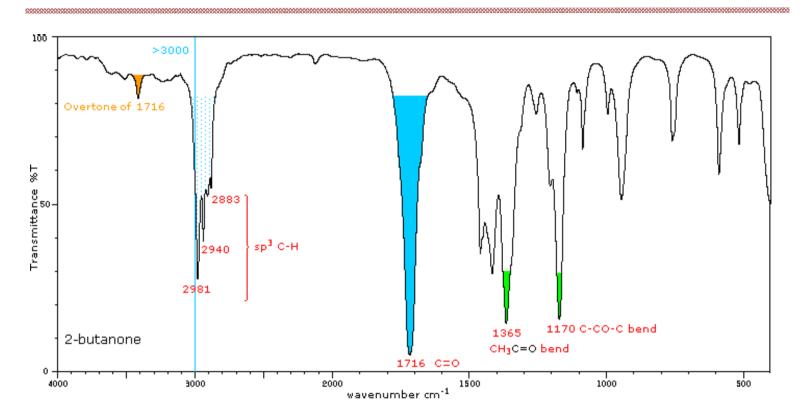
$$E_v=(v+\frac{1}{2})hc\bar{\nu}=(v+\frac{1}{2})h\nu$$
 où $v=0,1,2,...,\infty$

Règles de sélection pour une transition dipolaire électrique

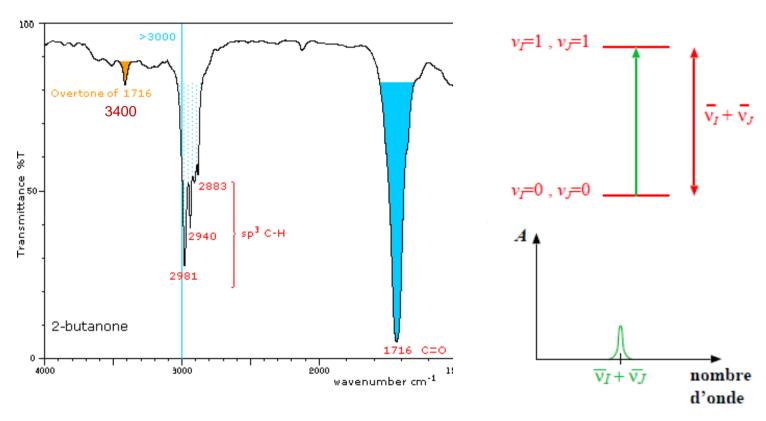

transition =
$$\langle \Psi_i | \mu | \Psi_f \rangle = \langle \Psi_i^{orb} | \mu | \Psi_f^{orb} \rangle \langle \Psi_i^{spin} | \Psi_f^{spin} \rangle \neq 0$$


Le moment dipolaire μ doit varier quand les atomes se déplacent les uns par rapport aux autres

$$\Delta v = \pm 1$$

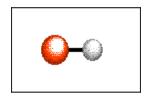

Conséquences:

- ✓ Le mode normal d'élongation des molécules diatomiques homonucléaires n'est pas observable en IR → TDG!
- ✓ A RT : la plupart des molécules sont dans leur état fondamental \Rightarrow transition fondamentale $v=0 \rightarrow v=1$

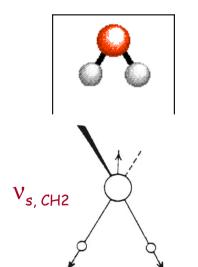

I - 3. Que voit-on sur un spectre IR?

bandes:

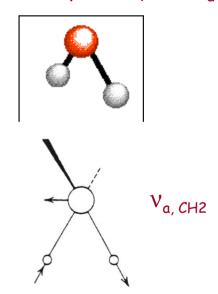
- √ fondamentales + autres...
- √ différents modes de vibration : élongations + déformations
- ✓ activité dépend de la symétrie (TDG) : varie comme le moment dipolaire


Bandes fondamentales et autres...

- ✓ l'harmonique n'est pas exactement 2 fois la fondamentale : anharmonicité!
- ✓ moins intenses car moins probables...
- √ harmoniques visibles dans le PIR : 4000 12500 cm⁻¹

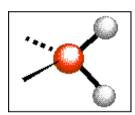

Types de vibrations

 \odot longueurs des liaisons : vibration d'élongation (valence) notée v_{AB}



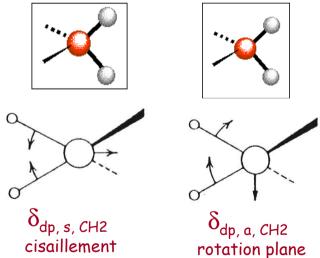
Pour un groupement formé de plusieurs liaisons identiques :

mode symétrique : v_s

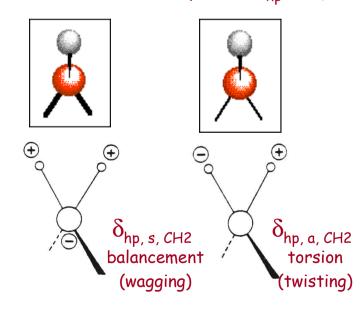


mode antisymétrique $: v_a$

Types de vibrations


 ${ 2}$ déformation angulaire : vibration de déformation notée $\delta_{{ t AB}}$

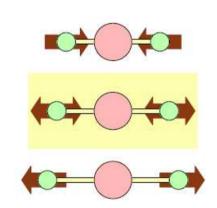
Pour un groupement formé de plusieurs liaisons identiques :


(rocking)

déformation hors du plan : δ_{dp}

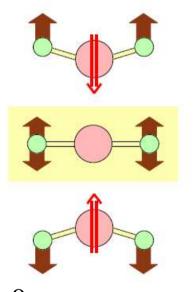
(scissoring)

déformation hors du plan $\,:\,\delta_{hp}$ ou γ



Activité des modes de vibration

mode normal de vibration actif en si le mouvement correspondant s'accompagne d'une variation du moment dipolaire électrique de la molécule

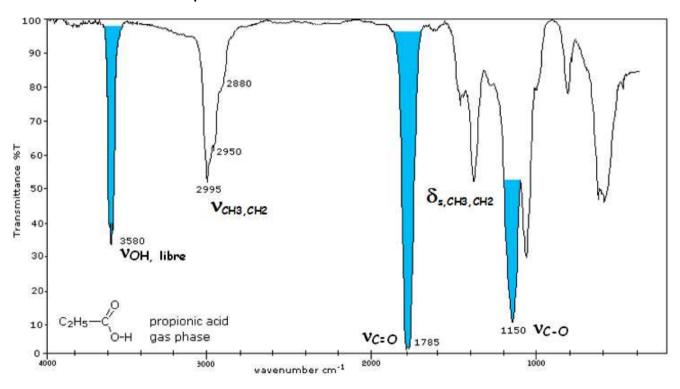

molécule linéaire A-B-A : $\vec{\mu}=0$

élongation symétrique

 $\vec{\mu} = 0 \Rightarrow$ mode inactif en IR

déformation angulaire

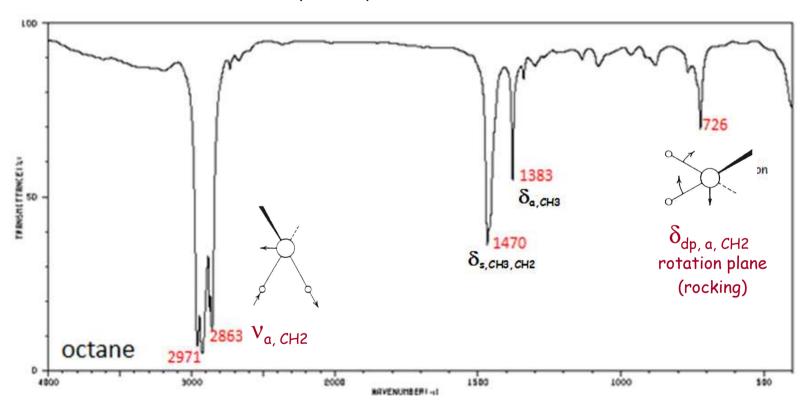
 $\vec{\mu} \neq 0 \Rightarrow$ mode actif en IR


TDG: centre d'inversion!

Principe d'exclusion mutuelle : seuls les modes antisymétriques sont actifs en IR

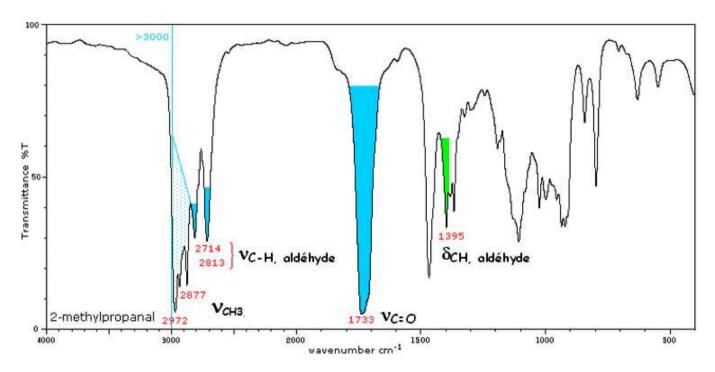
Intensité des bandes

L'intensité de la bande est liée à la variation du moment dipolaire et à la concentration


✓ Polarité intrinsèque du vibrateur

Intensité des bandes

L'intensité de la bande est liée à la variation du moment dipolaire et à la concentration


✓ Variation du moment dipolaire pendant la vibration

Intensité des bandes

L'intensité de la bande est liée à la variation du moment dipolaire et à la concentration

✓ « concentration » du vibrateur : loi de Beer-Lambert A=Elc

Position des bandes : fréquences de groupe

$$\bar{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

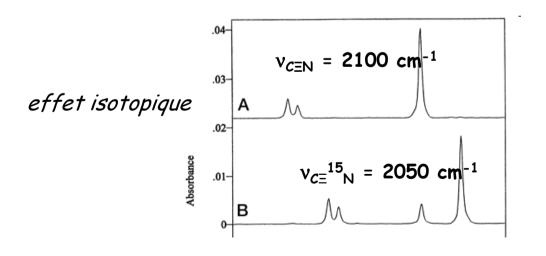
 \checkmark ordre de la liaison \Rightarrow \lor proportionnelle à k

$$v_{c=c} = 1640 \text{ cm}^{-1}$$

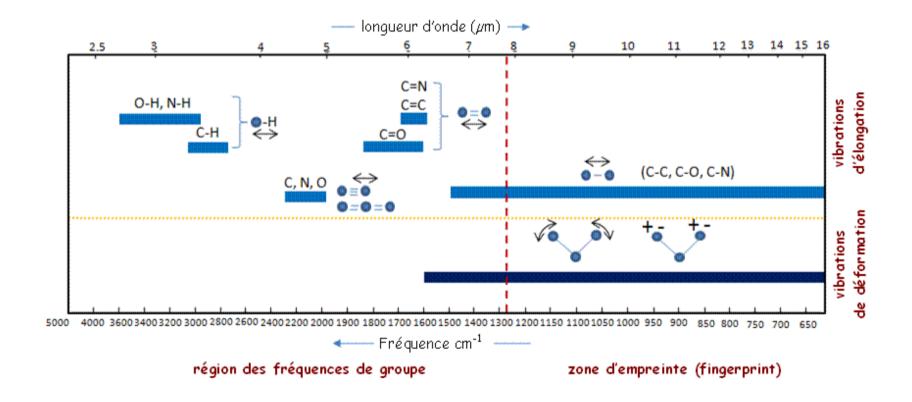
$$k_{C=C} = \frac{3}{2} k_{C=C} \qquad v_{c=C} = \sqrt{\frac{3}{2}} v_{c=C} \qquad v_{c=c} = 2008 \text{ cm}^{-1}$$

$$k_{C-C} = \frac{1}{2} k_{C=C} \qquad v_{c-C} = \sqrt{\frac{1}{2}} v_{c=C} \qquad v_{c-c} = 1159 \text{ cm}^{-1}$$

$$v_{c=c} > v_{c=c} > v_{c-c} > v_{c-c}$$

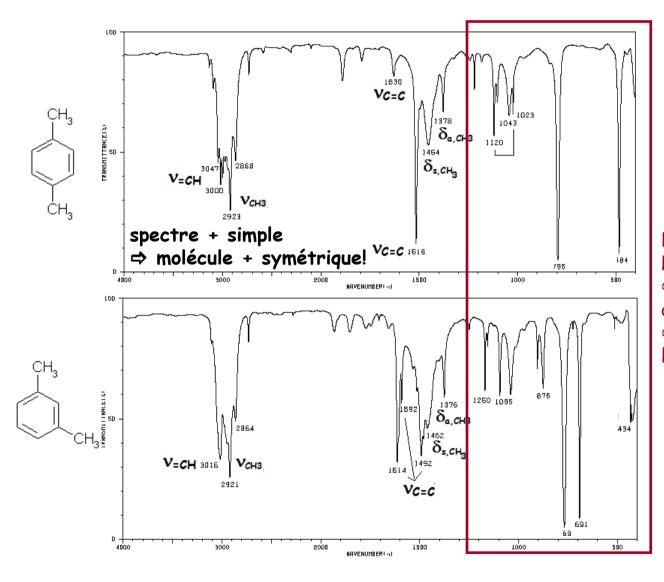

Vibrateurs indépendants mais ... =C-H -C-H EC-H 3300 3100 2900 $V (cm^{-1})$ type de C sp² sp³ sp Mais même région IR ⇒ Fréquence de groupe Longueur (Å) 1.08 1.10 1.12 $k(N.m^{-1})$ 593 523 458

Position des bandes : fréquences de groupe


$$\bar{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

✓ la masse du vibrateur ⇒ v inversement proportionnelle à μ

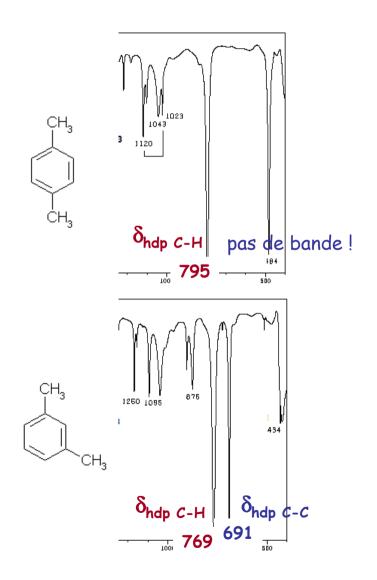
Liaisons	C-H	C-C	C-F	C-CI	C-Br	C-I	
Masses réduites (µen 10 ⁻²⁶ kg)	0,15	0,99	1,21	1,48	1,73	1,82	
Fréquences de vibration en cm ⁻¹	3030	1100	1000	750	600	450	
	•		μ	>			


Se repérer dans la gamme infrarouge

Doit-on apprendre par cœur toutes les fréquences ?

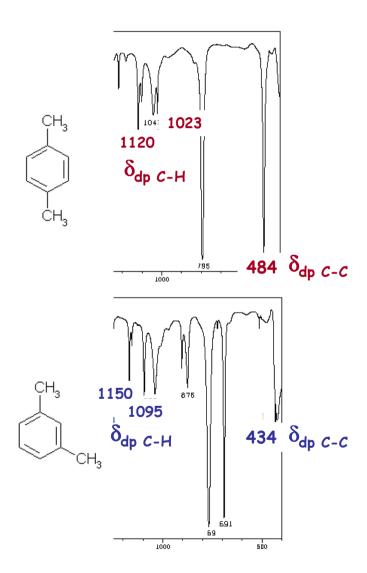
Tables classées par fonctions chimiques

Importante de la zone d'empreinte

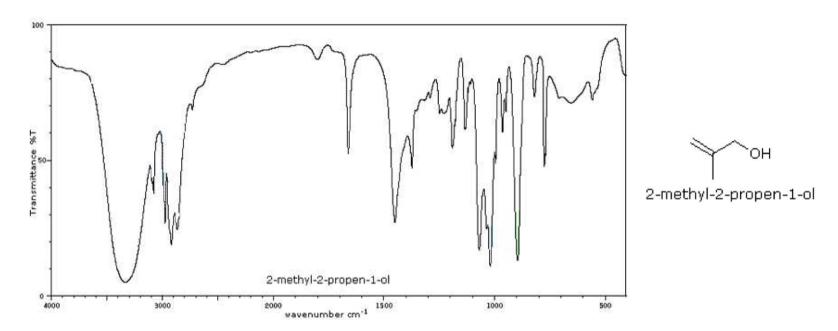


Déformations dp et Hdp des C-H et C-C

⇒ nombre de bandes différent
⇒ caractéristique de la structure des composés


Importante de la zone d'empreinte

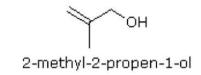
Hydro adjac	gènes ents	Substitution	δ _{=CH}	δ_{cc}
6н	‡Ç‡	Néant	ν ₁₁ 673	
	<u>+Ō+</u>		ν ₅ (995 interdite)	ν ₄ (703 interdite)
5H	‡‡‡	1	751 ± 15 ^(a)	700-675 (F)
4н	+	1,2	751 ± 7	inactive ^(d)
1.	, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	meta	782 ± 9	710-665 (F)
3н	†	1,2,3	810-750	730-685 (v)
	‡\$+ -	para	817 ± 13 ^(b)	inactive ^(d)
2н 🗸	+	1,2,4	860-800	730-685 (v)
	÷	1,2,3,4	860-800	
	†¢†	1,3,5	865-810	730-665 (F)
1н	***	1,2,3,5		
	$\dot{\Sigma}$	1,2,4,5	880-840 ^(c)	inactive (d)
	‡	penta		



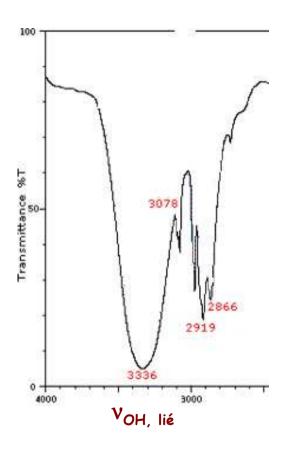
Importante de la zone d'empreinte

	Mono	Ortho	Méta	Para (b)
	1000 ± 5	- /->	1000 ± 5	-
	1027 ± 3 (a)	1033 ±11 ^(a)	1076 ± 7	1013 ± 5 (IR)
δ _{=cH}	1073 ± 4	1125 ± 14	1096 ± 7	1117 ± 7 (IR)
dp	1156 ± 5	1160 ± 4	1157 ± 5	1175 ± 6 (R)
	1177 ± 7	-	-	-
δ_{cc}	560-418	470-418	490-415	552-446

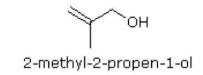
I - 4. Analyse d'un spectre IR : mode d'emploi



Doit-on attribuer toutes les bandes?

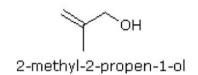

- 1. vibrations d'élongation des fonctions chimiques
- 2. vibrations de déformations des fonctions chimiques

Tables à utiliser : alcools, alcènes, alcanes


(1) repérer les vibrations de valence des fonctions alcools

O—H Stretching Vibration	3			
free OH hydrogen bonded OH	3,670-3,580	2-73-2-79	y,	sharp band
(a) intermolecular dimeric association	3,550-3,450	2-82-2-90	v.	sharp band int. changes
polymeric association	3,400-3,230	2-94-3-10	S.	broad band quency shifts on dilution
(b) intramolecular (c) chelate compounds	3,590-3,420 3,200-1,700	2·79-2·92 3·13-5·88	v. w.	sharp band very broad band unaffected by dilution
tropolones —OD	ca. 3,100 2,780-2,400	ca. 3:23 3:60-4:17	٧.	O—D str.
C—O Stretching and O—I	i In-plane Defe	ormations		
primary alcohol	1,075-1,000	9-30-10-00	5.	Lv.
and the state of the best	1,350-1,260	7·40- 7·94 8·93- 9·71	5.	Lv.
secondary alcohol	1,120-1,030 1,350-1,260	7.41- 7.94	S. S.	Lv.
tertiary alcohol	1,170-1,100	8-55- 9-09	S.	l.v.
Self-ed greeden toek	1,410-1,310	7:09- 7:63	S.	1.v.
phenois	1,230-1,140 1,410-1,310	8·13- 8·77 7·09- 7·63	S. S.	I.v.

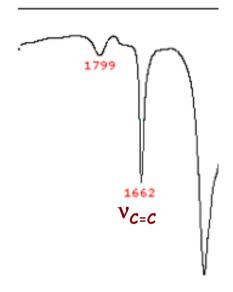
(2) confirmer avec les vibrations de déformation (empreinte) : alcools


ALCOHO	216	ANTE	DU	ENO	2.1
ALLITE	11	AINII			100

free OH hydrogen bonded OH	3,670-3,580	2:73-2:79	v.	sharp band
(a) intermolecular dimeric association	3,550-3,450	2-82-2-90	v.	sharp band int. change
polymeric association	3,400-3,230	2-94-3-10	S.	broad band quency shift
(b) intramolecular (c) chelate compounds	3,590-3,420 3,200-1,700	2·79-2·92 3·13-5·88	v. w.	sharp band unaffected by dilution
tropolones —OD	ca. 3,100 2,780-2,400	ca. 3:23 3:60-4:17	v.	O—D str.

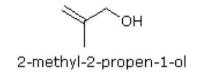
primary alcohol	1.075_1.000	9-30-10-00	8
THE PARTY OF THE PARTY OF THE	1,350-1,260	7-40- 7-94	34
secondary alcohol	1,120-1,030	8:93- 9:71	5.
and the second second second	1,350-1,260	7-41- 7-94	8.
tertiary alcohol	1,170-1,100	8-55- 9-09	S.
tell and entrances	1,410-1,310	7:09- 7:63	S.
phenois	1,230-1,140	8.13- 8.77	S.
Tooline .	1,410-1,310	7-09- 7-63	S.

(1) repérer les vibrations de valence des fonctions alcènes

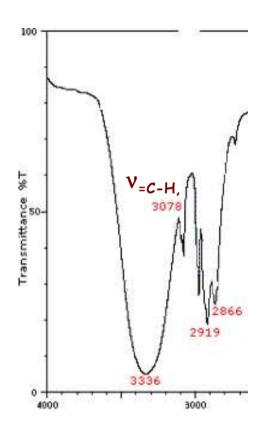


ALKENES

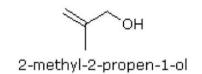
C=C Stretching Vibration	15			
non-conj. C=C CHR=CH ₄ CHR ₁ =CHR ₃ (cis) CHR=CHR, (trons)	1,680-1,620 1,645-1,640 1,665-1,635 1,675-1,665	5-95-6-17 6-08-6-10 6-01-6-12 5-97-6-00	v. v. v. v.	•
CR ₁ R ₈ =CH ₈ CR ₁ R ₈ =CHR ₈ CR ₁ R ₈ =CR ₈ R ₄ phenyl conj. C=C C=O or C=C conj. C=C	1,660-1,640 1,673-1,683 1,690-1,670 ca. 1,625 1,660-1,580	6·02-6·10 5·92-5·99 ca. 6·16 6·02-6·33	v. v. w. s.	Lv. enh. int. cisoid form int. often more enh. than transoid
0.110	<u> </u>	-		


C-H Stretching and Deformation Vibrations

CHR ₁ =CH ₂	3,040-3,010	3-29- 3-32	m.	CH str. (CHR.)
cinq-cii	3,095-3,075		m.	CH str. (CH.)
	995- 985	10-05-10-15	m.	CH o.o.p. def.
	915- 905	10-93-11-05	8.	CH, o.o.p. def.
	1,850-1,800	5.41- 5.56	m.	overtone
	1,420-1,410	7-04- 7-09	w.	CH, i.p. def.
	1,300-1,290		V.	CH i.p. def.
CHR ₁ =CHR ₂ (cis)	3,040-3,010		m.	CH str.
	1,420-1,400	7.04- 7.14	w.	CH i.p. def.
	>730- 665	13-70-15-04	8.	CH o.o.p. def.
CHR ₁ =CHR ₂ (trans)	3,040-3,010		m.	CH str.
	200 200		8.	CH o.o.p. def.
	1,310-1,290		w.	CH i.p. def.
$CR_1R_2=CH_2$	3,095-3,075		m.	CH str.
	895- 885		8.	o.o.p. def.
	1,800-1,780		m.	overtone
	1,420-1,410		w.	CH ₂ i.p. def.
$CR_1R_2=CHR_2$	3,040-3,010		m.	CH str.
	850- 790	11.76-12.66	m.	CH o.o.p. def.

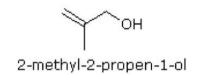


(1) repérer les vibrations de valence des fonctions alcènes

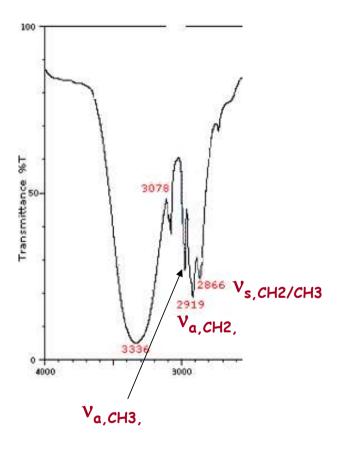


ALKENES

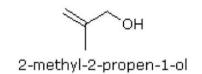
C=C Stretching Vibratio	ns			
non-conj. C=C CHR-CH ₂ CHR ₁ =CHR ₃ (cis) CHR ₁ =CHR ₄ (trans) CR ₁ R ₃ =CH ₃ CR ₁ R ₃ =CH ₄ CR ₁ R ₄ =CR ₃ R ₄ phenyl conj. C=C C=O or C=C conj. C=C	1,680-1,620 1,645-1,640 1,665-1,635 1,675-1,665 1,660-1,640 1,675-1,665 1,690-1,670 ca. 1,625 1,660-1,580	5-95-6-17 6-08-6-10 6-01-6-12 5-97-6-00 6-02-6-10 5-97-6-00 5-92-5-99 ca. 6-16 6-02-6-33	V. V. V. V. V. W. S.	Lv. enh. int. cisoid form int. often more enh. than transoid
C—H Stretching and Def	ormation Vibrat	ions		
CHR ₁ =CH ₂	3,040-3,010 3,095-3,075 995- 985	3·29- 3·32 3·23- 3·25 10·05-10·15	m. m. m.	CH str. (CHR ₁) CH str. (CH ₂) CH o.o.p. def.
	915- 905 1,850-1,800 1,420-1,410 1,300-1,290	10-93-11-05 5-41- 5-56 7-04- 7-09 7-69- 7-75	8. m. w. v.	CH ₂ o.o.p. def. overtone CH ₂ i.p. def. CH i.p. def.
CHR ₁ =CHR ₁ (cis)	3,040-3,010 1,420-1,400 ->730- 665	3·29- 3·32 7·04- 7·14 13·70-15·04	m. w.	CH str. CH i.p. def. CH o.o.p. def.
	3,040-3,010 >-980- 960 1,310-1,290	3·29-3·32 10·20-10·42 7·63- 7·75	m. s.	CH str. CH o.o.p. def. CH i.p. def.
CR ₁ R ₂ =CH ₂	3,095-3,075	3·23- 3·25	m.	CH str. o.o.p. def.
CR_1R_2 = CHR_3	1,800-1,780 1,420-1,410 3,040-3,010 850- 790	5-56- 5-62 7-04- 7-09 3-29- 3-32 11-76-12-66	m. w. m. m.	overtone CH ₂ i.p. def. CH str. CH o.o.p. def.


(2) confirmer avec les vibrations de déformation (empreinte) : alcènes

ALKENES

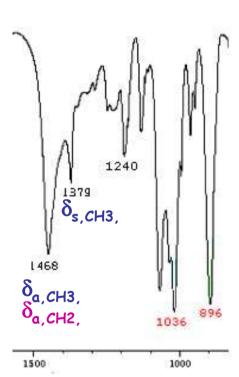

C=C Stretching Vibrat	lane				
non-conj. C=C CHR-CH ₃ CHR ₁ =CHR ₄ (cis) CHR ₁ =CHR ₅ (trans) CR ₁ R ₂ =CH ₃ CR ₂ R ₄ =CHR ₃ CR ₂ R ₄ =CR ₃ R ₄ phenyl conj. C=C C=O or C=C conj. C=C	1,680-1,620 5-95 1,645-1,640 6-08 1,665-1,635 6-01 1,675-1,665 5-97 1,660-1,640 6-02 1,675-1,665 5-97 1,690-1,670 5-92 (ca. 1,625 ca. 6	-6·17 v. -6·10 v. -6·12 v. -6·00 v. -6·10 v. -6·00 v. -5·99 w. 6·16 s. -6·33 s.	Lv. enh. int. cisoid form int. often more enh. than transoid	nonique	1240
C—H Stretching and D	eformation Vibrations			$\int \delta_{\epsilon}$	lp =CH2
CHR ₁ =CH ₂	3,095–3,075 3-23 995– 985 10-05 915– 905 10-93 1,850–1,800 5-41	- 3-32 m. - 3-25 m. -10-15 m. -11-05 s. - 5-56 m. - 7-09 w.	CH str. (CHR ₄) CH str. (CH ₂) CH 0.0.p. def. CH ₂ 0.0.p. def. overtone CH ₂ i.p. def.	V	1036 2896
CHR ₁ =CHR ₁ (cis)	1,300-1,290 7-69 3,040-3,010 3-29 1,420-1,400 7-04	- 7·75 v. - 3·32 m. - 7·14 w.	CH i.p. def. CH str. CH i.p. def.	1500	δ _{hdp} C-H,
$\mathrm{CHR}_{1}{=}\mathrm{CHR}_{1}\left(\mathit{trans}\right)$	3,040-3,010 3.29	1–15·04 s. 1–3·32 m. 1–10·42 s.	CH o.o.p. def. CH str. CH o.o.p. def.		
CR ₁ R ₂ =CH ₂	3,095-3,075 3·23 895 885 11·17	- 3·25 - 11·30 - 5·62 - 700	CH i.p. def. CH str. e.e.p. def. overtone CH ₃ i.p. def.		
CR ₁ R ₂ =CHR ₃	3,040-3,010 3.29	- 3·32 m. -12·66 m.	CH sur. CH o.o.p. def.		

(1) repérer les vibrations de valence des fonctions alcanes

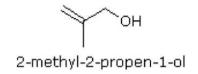


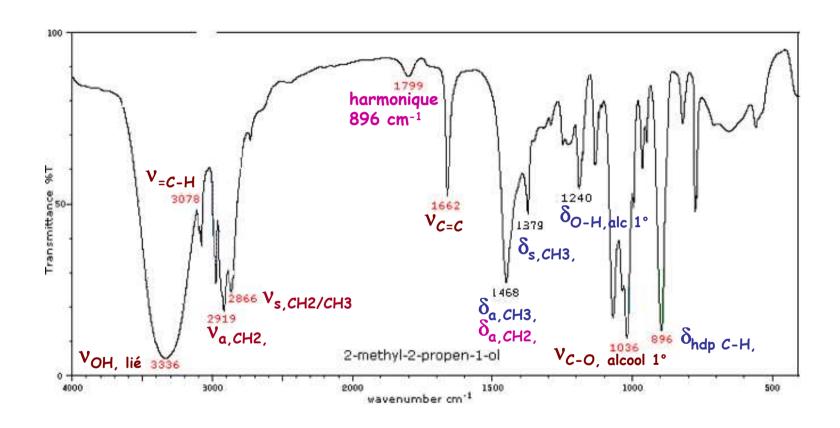
ALKANES

C-H Stretching Vibration	S			
СН,	2,975-2,950	3.36-3.39	m.	The presence of several o
_	2,885-2,860	3.47-3.50	m.	these groups gives strong
CH₂	2,940-2,915	3.40-3.45	m.	absorption
CVV (I	2,870-2,845	3.49-3.52	m.	<u> </u>
-CH ₂ (cyclopropane)	3,080-3,040	3·25-3·29 3·45-3·47	v. w.	1.V.
-CH	2,900–2,880	3.43-3.41	₩.	see ethers, amines etc.
OCH ₃ , NCH ₃ etc.				, ammos oto
37.55				
C—H Deformation Vibrat	ions			
				1
C—CH _a	1,470-1,435	6.80-6.97	m.	asym. def.
CH ₃	1,385–1,370	7.22-7.30	s.	sym. def.
C(CH ₂) ₂	1,385-1,380	7.22-7.25	s.	doublet of approx. equa
C(C113)2	1,370–1,365	7-30-7-33	s.	fint.
C(CH _a) _s	1,395-1,385	7-17-7-22	m.	\ doublet
C(C113/3	1,365	7.33	s.	fint. ratio ca. 1:2
CH ₂	1,480-1,440	6.76-6.94	m.	CH ₂ scissor
CH	ca. 1,340	ca. 7·46	w.	l.v.
		-		
Skeletal Vibrations				
O/OTT >	1 175 1 165	8.51 -8.58		
$C(CH_3)_2$	1,175–1,165	8.55- 8.77	s. s.	
	1,170–1,140 840– 790	11.90-12.66	m.	l.v.
C(CH)	1,255–1,245	7.97- 8.03	S.	****
C(CH ₃) ₃	1,250-1,200	8.00- 8.33	s.	
-(CH•)₄	750- 720	13.33-13.89	. S.	
(~11g/4	,,,,			1
-CH ₂ - (cyclopropane)	1,020-1,000	9.80-10.00	m.	l.v.



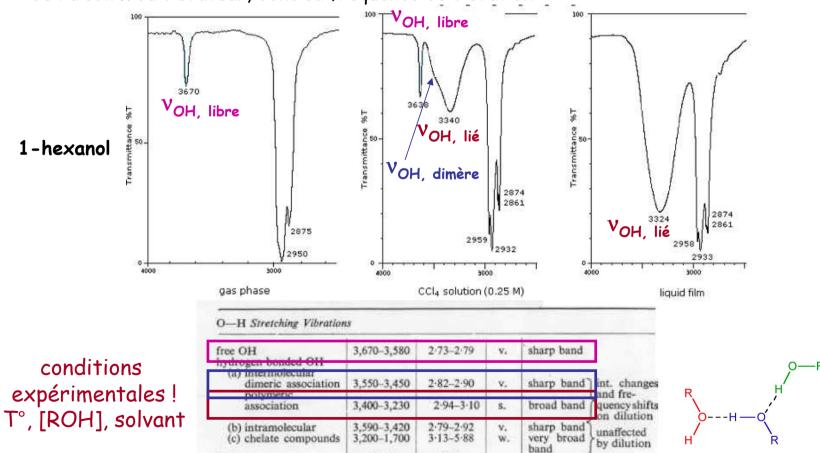
(2) confirmer avec les vibrations de déformation (empreinte) : alcanes




ALKANES

C-H Stretching Vibration	ıs			
—CH ₃	2,975-2,950 2,885-2,860	3·36–3·39 3·47–3·50	m. m.	The presence of several of these groups gives strong
—CH ₂ —	2,940-2,915 2,870-2,845	3·40-3·45 3·49-3·52	m. m.	absorption
-CH ₂ - (cyclopropane)	3,080-3,040	3·25–3·29 3·45–3·47	V.	l.v.
-CH OCH ₃ , NCH ₈ etc.	2,900–2,880	3.43-3.47	w.	see ethers, amines etc.
C—H Deformation Vibrat	ions			
С—СН3	1,470-1,435	6-80-6-97	m.	asym. def.
C(CII.)	1,385-1,370 1,385-1,380	7·22-7·30 7·22-7·25	S.	sym. def. doublet of approx. equa
C(CH ₃) ₂	1,370–1,365	7.30-7.33	s.	fint.
C(CH ₃) ₃	1,395-1,385	7.17-7.22	m.	doublet
-СH ₂	1,365 1,480–1,440	7.33 6·76–6·94	m.	CH ₂ scissor
-CH-	ca. 1,340	ca. 7·46	w.	i.v.
Skeletal Vibrations				
C(CH ₃) ₂	1,175–1,165 1,170–1,140	8·51 -8·58 8·55- 8·77	' S. S.	
	840- 790	11.90-12.66	m.	1,v.
C(CH ₃) ₃	1,255-1,245	7.97- 8.03	s.	
	1,250-1,200 750- 720	8·00- 8·33 13·33-13·89	s.	
-(CH ₂) ₄ CH ₂ (cyclopropane)		9.80-10.00	s. m.	l.v.
-CH ₂ - (cyclopropane)	1,020-1,000	3.00-10.00	, ш.	1. V.

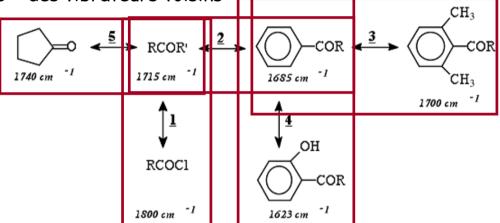
Analyse du spectre



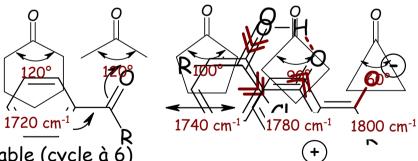
I - 5. Paramètres influant sur les fréquences de groupe

Largeur des bandes : interactions intermoléculaires

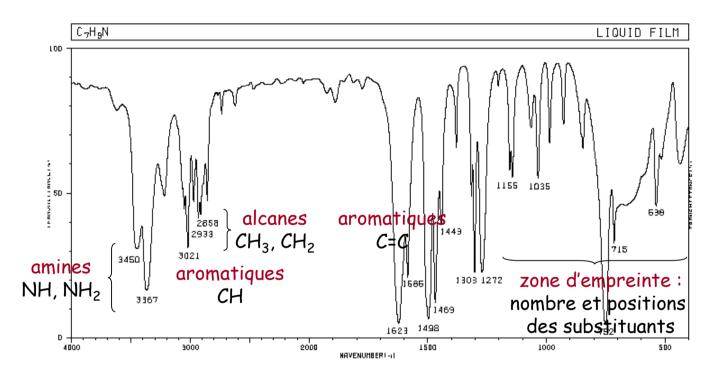
La largeur de bande dépend du nombre d'environnements chimiques du vibrateur \Rightarrow la force des liaisons intermoléculaires, comme la liaison hydrogène, influence la force de liaison k du vibrateur, donc sa fréquence de vibration



Facteurs moléculaires

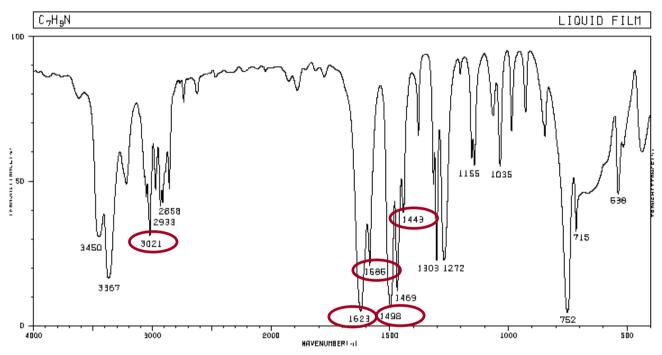

$$\bar{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

la force de liaison k du vibrateur, donc sa fréquence de vibration, peut être influencée


par les « effets » des vibrateurs voisins

- 1. effet inductif attracteur (-I) du chlore
- 2. conjugaison avec le cycle aromatique
- 3. gêne stérique
- 4. liaison hydrogène intramoléculaire très stable (cycle à 6)
- 5. effet mécanique du cycle qui provoque la rigidification du vibrateur C=O

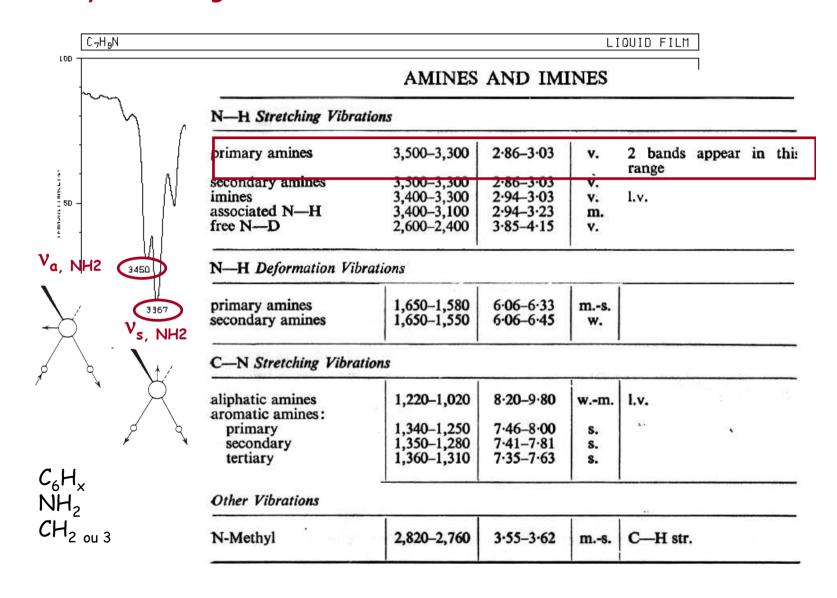
I - 6. Analyse d'un composé inconnu : mode d'emploi

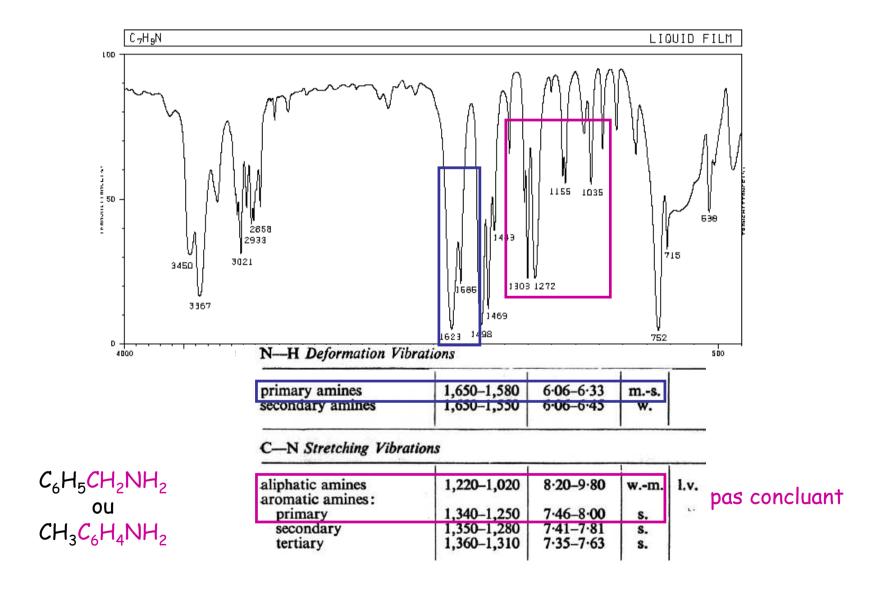

<u>Composé de formule</u>: $C_xH_yN_tO_z$; 2i = 2x + † + 2 - y

i=(2*7+1+2-9)/2=4

noyau aromatique : 4 insaturations

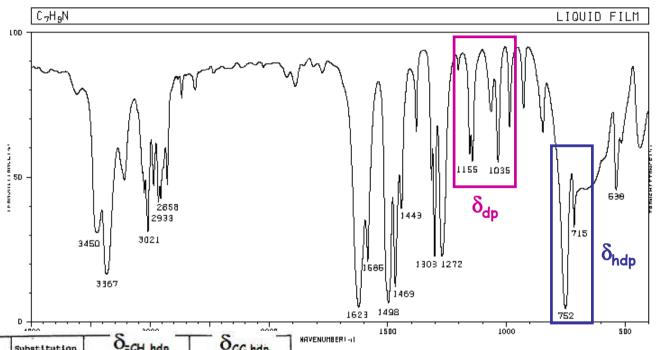
 \Rightarrow reste un $C: CH_3$ ou CH_2


(1) vérifier les informations structurales (insaturations) obtenues

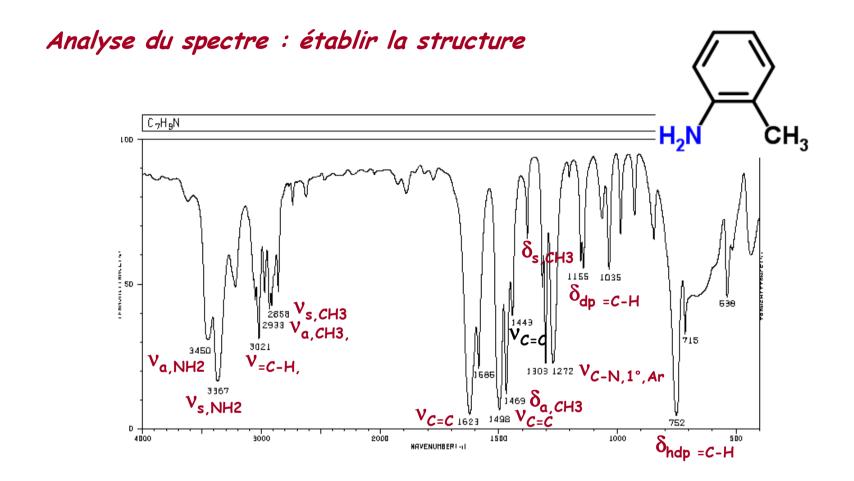

AROMATIC HOMOCYCLIC COMPOUNDS

=C—H str.	3,080-3,030	3.25-3.30	wm.	multiple peaks may appear
C=C i.p. vib.	1,625-1,575	6.16-6.35	v.	usually close to 1,600 cm ⁻¹
	1,525-1,475	6.56-6.78	v.	usually close to 1,500 cm-1
	1,590-1,575	6.29-6.36	v.	strong band for conj. rings
	1,465-1,440	6.38-6.94	v.	

(2) rechercher les bandes d'élongations caractéristiques des fonctions chimiques envisagées

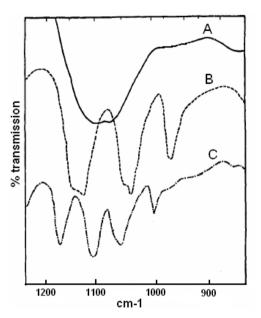


(3) confirmer avec la recherche des bandes de déformation


(3) confirmer avec la recherche des bandes de déformation

aromatique mono ou disubstitué : zone d'empreinte

Hydrogènes adjacents	Substitution	δ _{=CH hdp}	δ _{CC hdp}
5H +Ç	1	751 ± 15 (a)	700-675 (F)
48 +	\$+- 1,2	751 ± 7	inactive (d)
3н .С	T ₄ - 1,3	782 ± 9	710-665 (F)
2H +	0+ - 1,4	817 ± 13 (b)	inactive (d)


	Mono	Ortho	Méta	Para (b)
9 CH	1000 ± 5 1027 ± 3 ^(a) 1073 ± 4 1156 ± 5 1177 ± 7	- 1033 ±11 ^(a) 1125 ±14 1160 ± 4	1000 ± 5 1076 ± 7 1096 ± 7 1157 ± 5	- 1013 ± 5 (IR) 1117 ± 7 (IR) 1175 ± 6 (R) -
9 cc	560-418	470-418	490-415	552-446

! Toujours confirmer la structure par d'autres analyses spectroscopiques : RMN, CP-MAS

II - Spectroscopie infrarouge des complexes de coordination 1. Information sur le mode de complexation des ligands

Ion libre

Complexe

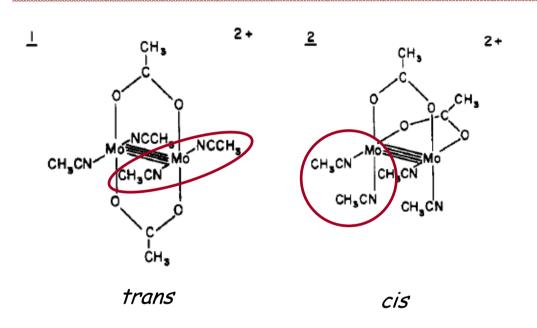
unidentate

symétrie > ⇒ levée de dégénérescence des modes normaux de vibration ⇒ nombre de bandes >

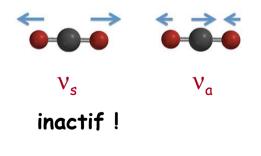
Complexe

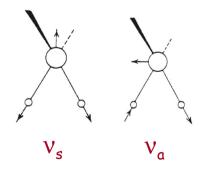
bidentate

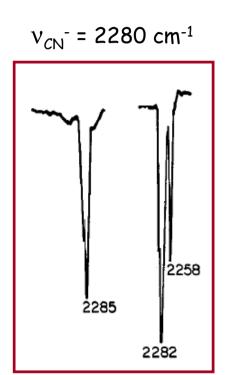
chélatant

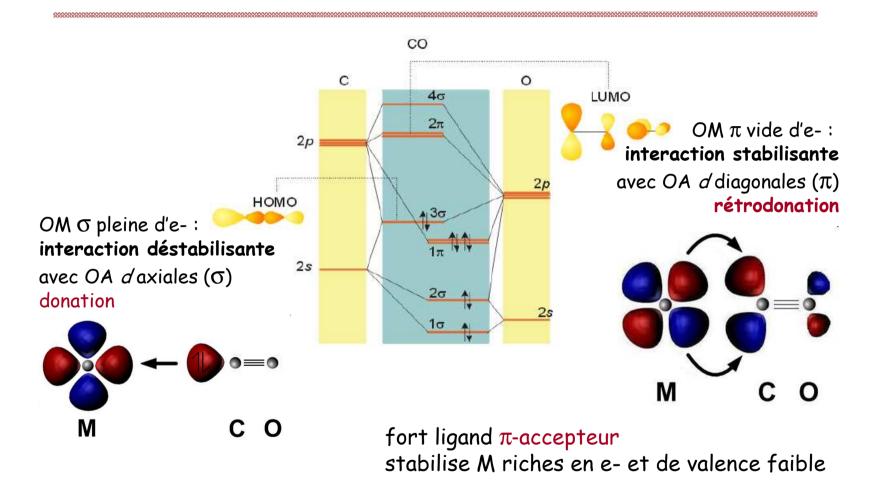

Complexe

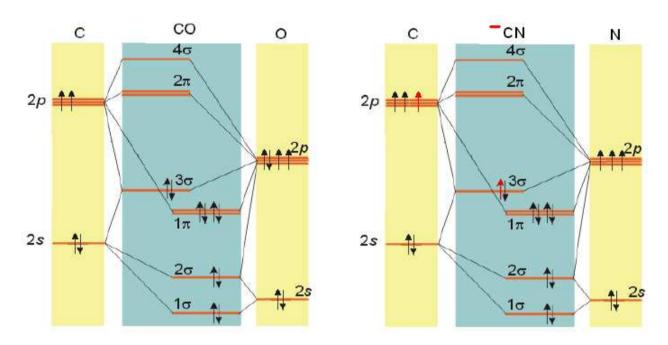
bidentate


TDG


pontant


I - 2. Information sur la structure des complexes (isomères)


Pour un groupement formé de plusieurs liaisons identiques :



I - 3. Evaluer la rétrodonation : fréquence des ligands π -accepteurs

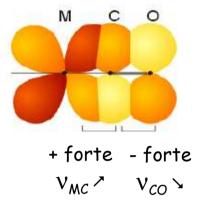
rétrodonation remplit les $OM^* \Rightarrow$ ordre liaison $\searrow \Rightarrow k \searrow$, $V_{CO} \searrow$

Evaluer la rétrodonation : CO vs -CN

rétrodonation se fait par les OM côté C
-CN: la charge porté par le C limite la rétrodonation

 $^{-}$ CN est fort σ -donneur, faible π -accepteur : $\nu_{CN, \, libre}$ = 2080 cm $^{-1}$, $\nu_{CN, \, complexe}$ = 2150 cm $^{-1}$

CO est faible σ -donneur, fort π -accepteur : $v_{CO, libre}$ = 2143 cm⁻¹, $v_{CO, complexe}$ = 2000 cm⁻¹


Evaluer la rétrodonation

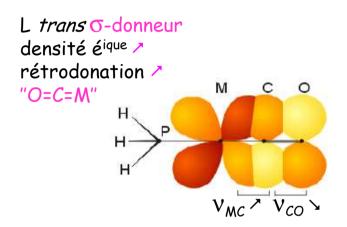
Densité de charge du métal

3	4	5	6	7	8	9	10	11	12
Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn
Scandium 3d ² 4s ²	Titane 3d24s2	Vonadium 3d³4s²	Chrome 3d ⁸ 4s ²	Manganèse 3d¶4s²	Fer 3d64s2	Cobalt 3d74s2	Nickel 3d 8 4s2	Culvre 3dm4s1	Zino 3dm4s2

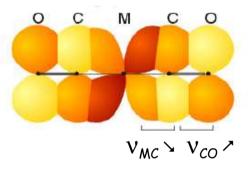
	ν _{CO} / cm ⁻¹
CO (g)	2143
$[\mathbf{Mn}(\mathbf{CO})_6]^+$	2090
Cr(CO)6	2000
$[V(CO)_6]$	1860
$[Ti(CO)_6]^{2-}$	1750
Fe ₂ (CO) ₉	2082, 2019, 1829

$$K_4[Fe^{(II)}(CN)_6]$$
 $K_3[Fe^{(III)}(CN)_6]$ V_{CN} 2100 cm-1 2135 cm-1

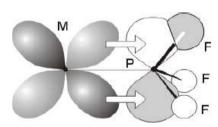
charge -
$$\nearrow$$
 rétrodonation \nearrow V_{CO} \searrow charge + \nearrow donation \nearrow V_{CN} \nearrow


Electronégativité du métal

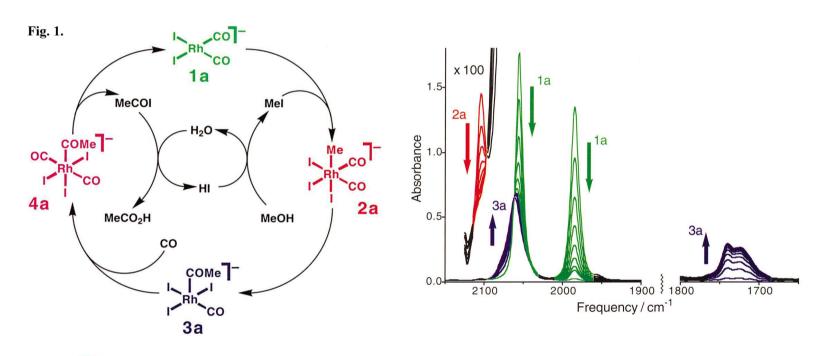
	χ_{M}	V_{CN} (cm ⁻¹)
[Ni (CN) ₄] ²⁻	1.91	2130
$[Pd(CN)_4]^{2-}$	2.20	2140
[Pt(CN) ₄] ²⁻	2.28	2150


électronégativité \nearrow donation \nearrow V_{CN} \nearrow

Evaluer la rétrodonation


Nature du ligand en *trans*

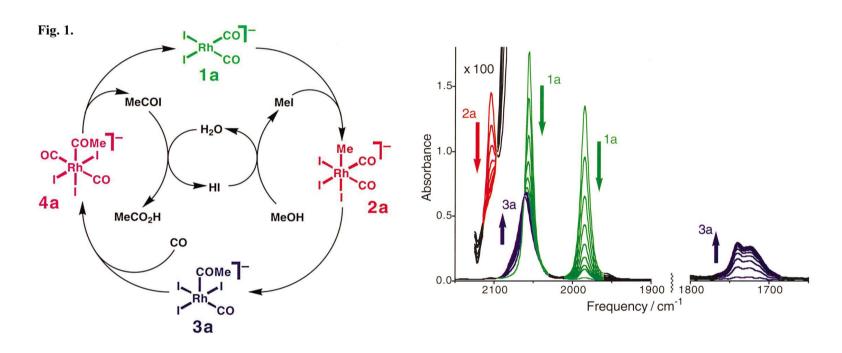
Complex	v _{CO} cm ⁻¹
Mo(CO) ₃ (PF ₃) ₃	2090, 2055
Mo(CO) ₃ (PCl ₃) ₃	2040, 1991
$Mo(CO)_3[P(OMe)_3]_3$	1977, 1888
Mo(CO) ₃ (PPh ₃) ₃	1934, 1835
Mo(CO) ₃ (NCCH ₃) ₃	1915, 1783
Mo(CO) ₃ (triamine) ₃	1898, 1758
Mo(CO) ₃ (pyridine) ₃	1888, 1746



L trans π -accepteur densité é^{ique} $M \searrow$ rétrodonation \searrow $O \equiv C \rightarrow M$

 PF_3 , ligand π -accepteur aussi fort que CO

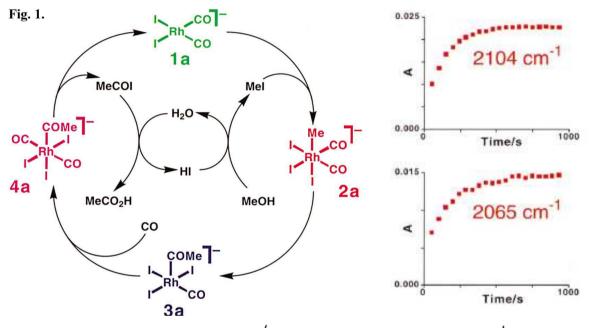
Etude mécanistique : procédé Monsanto



cis: V_{CO} = 2055 cm⁻¹ et 1990 cm⁻¹, bandes bien visibles = consommation lente!

Addition oxydante \Rightarrow Rh^{III}: v_{CO} = 2104 cm⁻¹ (2065 cm⁻¹ non visible)

Etude mécanistique : procédé Monsanto

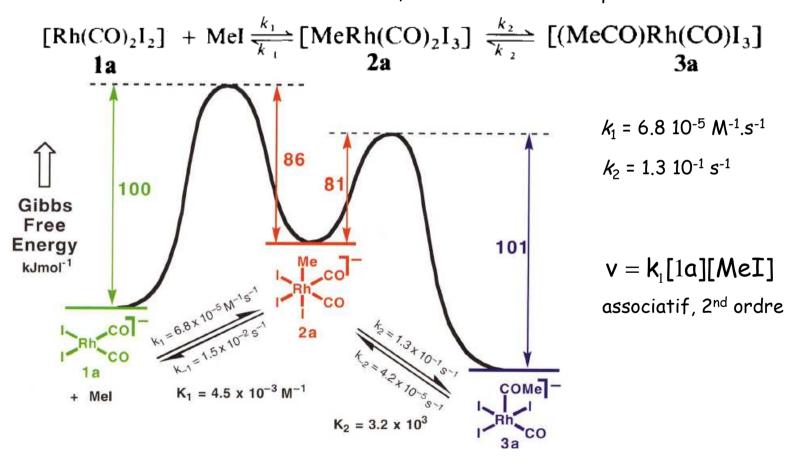


 $insertion-migration: V_{CO} = 1745 \text{ cm}^{-1} \text{ caractéristique de } C=O$

 V_{CO} = 2060 cm⁻¹ caractéristique de $C \equiv O$ (1 seul vibrateur)

 $non\ d\acute{e}tectable\ sur\ le\ spectre\ IR \Rightarrow\ temps\ de\ vie\ trop\ court$

Etude mécanistique : procédé Monsanto


Absorption IR proportionnelle à la concentration!

Si [MeI] très élevée, réaction du pseudo-premier ordre : $k_{\rm obs} = \frac{k_1 k_2 {\rm [MeI]}}{k_{-1} + k_2}$

Or, d'après les réactions :
$$\frac{[2\mathbf{a}]}{[1\mathbf{a}]} = \frac{k_1[\mathrm{MeI}]}{k_{-1} + k_2} \quad \mathrm{donc} : \ k_2 = k_{\mathrm{obs}} \frac{[1\mathbf{a}]}{[2\mathbf{a}]}$$

Etude mécanistique : procédé Monsanto

Mesure de k_{-2} sur l'élimination réductrice de **3a** en **1a** en présence d'un excès de MeI Mesure de k_2/k_{-1} sur l'élimination de **3a** en **2a** en l'absence de MeI Pour mieux suivre les réactions d'élimination, le réactif **3a** est marqué avec ¹³CO

